Machine Learning for Neuroscience: A Systematic Approach
暫譯: 神經科學的機器學習:系統性方法
Easttom, Chuck
- 出版商: CRC
- 出版日期: 2023-07-31
- 售價: $3,990
- 貴賓價: 9.5 折 $3,791
- 語言: 英文
- 頁數: 290
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032136723
- ISBN-13: 9781032136721
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book addresses the growing need for machine learning and data mining in neuroscience. The book offers a basic overview of the neuroscience, machine learning and the required math and programming necessary to develop reliable working models. The material is presented in a easy to follow user-friendly manner and is replete with fully working machine learning code. Machine Learning for Neuroscience: A Systematic Approach, tackles the needs of neuroscience researchers and practitioners that have very little training relevant to machine learning. The first section of the book provides an overview of necessary topics in order to delve into machine learning, including basic linear algebra and Python programming. The second section provides an overview of neuroscience and is directed to the computer science oriented readers. The section covers neuroanatomy and physiology, cellular neuroscience, neurological disorders and computational neuroscience. The third section of the book then delves into how to apply machine learning and data mining to neuroscience and provides coverage of artificial neural networks (ANN), clustering, and anomaly detection. The book contains fully working code examples with downloadable working code. It also contains lab assignments and quizzes, making it appropriate for use as a textbook. The primary audience is neuroscience researchers who need to delve into machine learning, programmers assigned neuroscience related machine learning projects and students studying methods in computational neuroscience.
商品描述(中文翻譯)
這本書針對神經科學中對機器學習和資料探勘日益增長的需求進行探討。書中提供了神經科學、機器學習以及開發可靠工作模型所需的數學和程式設計的基本概述。內容以易於理解的方式呈現,並包含完整可運行的機器學習程式碼。《神經科學的機器學習:系統性方法》針對那些對機器學習訓練非常有限的神經科學研究人員和從業者的需求進行了探討。書的第一部分提供了進入機器學習所需的主題概述,包括基本的線性代數和 Python 程式設計。第二部分則提供神經科學的概述,並針對計算機科學導向的讀者。該部分涵蓋了神經解剖學和生理學、細胞神經科學、神經疾病以及計算神經科學。書的第三部分深入探討如何將機器學習和資料探勘應用於神經科學,並涵蓋了人工神經網絡(ANN)、聚類和異常檢測。書中包含完整可運行的程式碼範例,並提供可下載的工作程式碼。它還包含實驗室作業和小測驗,使其適合用作教科書。主要讀者是需要深入了解機器學習的神經科學研究人員、被指派從事神經科學相關機器學習專案的程式設計師,以及學習計算神經科學方法的學生。
作者簡介
Dr. Chuck Easttom is the author of 32 books. He is an inventor with 22 computer science patents. He holds a Doctor of Science in cybersecurity, a Ph.D. in Nanotechnology, and a Ph.D. in computer science as well as three master's degrees (one in applied computer science, one in education, and one in systems engineering). He is a senior member of both the IEEE and the ACM. He is also a Distinguished Speaker of the ACM and a Distinguished Visitor of the IEEE. He has been active in the IEEE Brain Computer Interface Standards and is a member of the IEEE Engineering in Medicine and Biology Society.
作者簡介(中文翻譯)
查克·伊斯頓博士是32本書的作者。他是一位擁有22項計算機科學專利的發明家。他擁有網絡安全的科學博士學位、納米技術的博士學位以及計算機科學的博士學位,並且擁有三個碩士學位(分別為應用計算機科學、教育和系統工程)。他是IEEE和ACM的高級會員,也是ACM的傑出演講者和IEEE的傑出訪客。他在IEEE腦機介面標準方面非常活躍,並且是IEEE醫學與生物工程學會的成員。