Teaching Computers to Read: Effective Best Practices in Building Valuable NLP Solutions
暫譯: 教導電腦閱讀:建立有價值的自然語言處理解決方案的有效最佳實踐
Wagner-Kaiser, Rachel
- 出版商: CRC
- 出版日期: 2025-11-05
- 售價: $2,740
- 貴賓價: 9.5 折 $2,603
- 語言: 英文
- 頁數: 224
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1032484357
- ISBN-13: 9781032484358
-
相關分類:
Natural Language Processing
海外代購書籍(需單獨結帳)
商品描述
Building Natural Language Processing (NLP) solutions that deliver ongoing business value is not straightforward. This book provides clarity and guidance on how to design, develop, deploy, and maintain NLP solutions that address real-world business problems.
In this book, we discuss the main challenges and pitfalls encountered when building NLP solutions. We also outline how technical choices interact with (and are impacted by) data, tools, the business goals, and integration between human experts and the AI solution. The best practices we cover here do not depend on the cutting-edge modeling algorithms or the architectural flavor of the month. We provide practical advice for NLP solutions that are adaptable to the solution's specific technical building blocks.
Through providing best practices across the lifecycle of NLP development, this handbook will help organizations - particularly technical teams - use critical thinking to understand how, when, and why to build NLP solutions, what the common challenges are, and how to address or avoid them. By doing so, they'll deliver consistent value to their stakeholders and deliver on the promise of AI and NLP.
A code companion for the book is available here: https: //github.com/TeachingComputersToRead/TC2R-CodeCompanion
商品描述(中文翻譯)
建立能持續為業務帶來價值的自然語言處理 (NLP) 解決方案並不簡單。本書提供了如何設計、開發、部署和維護能解決現實世界商業問題的 NLP 解決方案的清晰指導。
在本書中,我們討論了在構建 NLP 解決方案時遇到的主要挑戰和陷阱。我們還概述了技術選擇如何與數據、工具、商業目標以及人類專家與 AI 解決方案之間的整合互動(及其影響)。我們在此涵蓋的最佳實踐不依賴於尖端的建模算法或當前流行的架構。我們提供了針對 NLP 解決方案的實用建議,這些建議可以適應解決方案的特定技術構建塊。
通過提供 NLP 開發生命周期中的最佳實踐,本手冊將幫助組織,特別是技術團隊,運用批判性思維來理解如何、何時以及為什麼構建 NLP 解決方案,常見的挑戰是什麼,以及如何解決或避免這些挑戰。這樣,他們將為其利益相關者提供持續的價值,並實現 AI 和 NLP 的承諾。
本書的代碼伴侶可在此獲得:https://github.com/TeachingComputersToRead/TC2R-CodeCompanion
作者簡介
Rachel Wagner-Kaiser has 15 years of experience in data and AI, entering the data science field after completing her Ph.D. in astronomy. She specializes in building natural language processing solutions for real-world problems constrained by limited or messy data. Rachel leads technical teams to design, build, deploy, and maintain NLP solutions, and her expertise has helped companies organize and decode their unstructured data to solve a variety of business problems and drive value through automation.
作者簡介(中文翻譯)
Rachel Wagner-Kaiser 擁有 15 年的數據與人工智慧經驗,在完成天文學博士學位後進入數據科學領域。她專注於為受限於有限或雜亂數據的現實問題構建自然語言處理解決方案。Rachel 領導技術團隊設計、構建、部署和維護 NLP 解決方案,她的專業知識幫助公司組織和解碼其非結構化數據,以解決各種商業問題並通過自動化驅動價值。