Long Memory Time Series Analysis
暫譯: 長期記憶時間序列分析

Dissanayake, Gnanadarsha Sanjaya, Doosti, Hassan

  • 出版商: CRC
  • 出版日期: 2026-02-25
  • 售價: $2,960
  • 貴賓價: 9.8$2,900
  • 語言: 英文
  • 頁數: 164
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032626992
  • ISBN-13: 9781032626994
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

商品描述

Long Memory Time Series Analysis is a comprehensive text which covers long memory time series with the different long memory time series discussed. The authors cover modelling and forecasting using various time series, deploying traditional and machine learning methodologies. The reader also learns recent research trends, such as state space modelling of generalized long memory time series and the use of the tsfGRNN machine learning tool in R. The book starts from autoregressive (AR) and moving average (MA) processes to descriptions of the autoregressive integrated moving average (ARMA) time series, the ARIMA model, and the autoregressive fractionally integrated moving average (ARFIMA) process. The differences of short, intermediate, and long memory processes are highlighted. The reader will gain knowledge of elementary time series through this extensive coverage.

The book discusses generalized Gegenbauer autoregressive moving averages (GARMA) and seasonal GARMA long memory time series and state space modelling of generalized and seasonal GARMA. The extensions of the short and long memory models driven by generalised autoregressive conditionally heteroskedastic (GARCH) errors are also presented. The extensive range of problems linked with generalized Gegenbauer long memory time series are presented to reinforce the reader's conceptual learning. Coverage on the use of time series with high frequency data captured through the latest technological innovations is an invaluable resource to the reader. This learning is done through examples of time series application case studies in medicine, biology, and finance.

The core audience is students attending advanced studies in time series. The book can also be used by researchers and data scientists involved in utilizing time series analysis in a modern context.

商品描述(中文翻譯)

長記憶時間序列分析 是一本全面的著作,涵蓋了不同的長記憶時間序列。作者探討了使用各種時間序列進行建模和預測,並採用了傳統和機器學習的方法。讀者還將了解最近的研究趨勢,例如廣義長記憶時間序列的狀態空間建模以及在 R 語言中使用 tsfGRNN 機器學習工具。本書從自回歸 (AR) 和移動平均 (MA) 過程開始,描述了自回歸整合移動平均 (ARMA) 時間序列、ARIMA 模型以及自回歸分數整合移動平均 (ARFIMA) 過程。短期、中期和長期記憶過程的差異得到了強調。讀者將通過這一廣泛的內容獲得基本的時間序列知識。

本書討論了廣義的根根堡自回歸移動平均 (GARMA) 和季節性 GARMA 長記憶時間序列,以及廣義和季節性 GARMA 的狀態空間建模。還介紹了由廣義自回歸條件異方差 (GARCH) 錯誤驅動的短期和長期記憶模型的擴展。與廣義根根堡長記憶時間序列相關的各種問題被提出,以加強讀者的概念學習。關於使用最新技術創新捕獲的高頻數據的時間序列的應用,對讀者來說是一個寶貴的資源。這一學習是通過醫學、生物學和金融領域的時間序列應用案例研究的例子來進行的。

本書的核心讀者是參加高級時間序列研究的學生。研究人員和數據科學家在現代背景下利用時間序列分析時,也可以使用本書。

作者簡介

Gnanadarsha Sanjaya Dissanayake earned a PhD in statistics, with an emphasis on time series econometrics, at the School of Mathematics and Statistics, University of Sydney, Australia. He is the Senior Biostatistician, New South Wales Ministry of Health, and an Honorary Research Associate, School of Mathematics and Statistics, University of Sydney, Australia.

Hassan Doosti is the Program Director in the Master of Data Science program and the Senior Lecturer in Statistics, School of Mathematical and Physical Sciences, Macquarie University, Sydney, Australia. He is the author/editor of three books: Flexible Nonparametric Curve Estimation (2024), Ethics in Statistics: Opportunities and Challenges (2024), and Practical Biostatistics for Medical and Health Sciences (co-authored with Seyed Hassan Saneii; 2024).

作者簡介(中文翻譯)

Gnanadarsha Sanjaya Dissanayake 在澳洲悉尼大學數學與統計學院獲得統計學博士學位,專注於時間序列計量經濟學。他是新南威爾士州衛生部的高級生物統計師,以及澳洲悉尼大學數學與統計學院的榮譽研究助理。

Hassan Doosti 是澳洲麥考瑞大學數學與物理科學學院數據科學碩士課程的項目主任及統計學高級講師。他是三本書的作者/編輯:Flexible Nonparametric Curve Estimation(2024年)、Ethics in Statistics: Opportunities and Challenges(2024年)以及Practical Biostatistics for Medical and Health Sciences(與Seyed Hassan Saneii共同撰寫;2024年)。

最後瀏覽商品 (14)