Bayesian Statistics: The Basics
暫譯: 貝葉斯統計學:基礎知識
Faulkenberry, Thomas J.
- 出版商: Routledge
- 出版日期: 2025-04-30
- 售價: $1,280
- 貴賓價: 9.5 折 $1,216
- 語言: 英文
- 頁數: 160
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1032744006
- ISBN-13: 9781032744001
-
相關分類:
Data Science、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
Bayesian Statistics: The Basics provides a comprehensive yet accessible introduction to Bayesian statistics, specifically tailored for any researcher with an interest in statistical methods. It covers the theoretical foundations of Bayesian inference, contrasting it with classical statistical methods like null hypothesis significance testing. The book emphasizes key concepts such as prior and posterior distributions, Bayes' theorem, and the Bayes factor, making them understandable even for readers with minimal mathematical backgrounds.
Methodologically, the book offers practical, step-by-step guides on how to conduct Bayesian analyses using the free software package JASP. Each chapter focuses on applying Bayesian methods to common research designs with real-world data. Readers will benefit from the clear examples, visualizations, and JASP screenshots that ensure the learning experience is interactive and easy to follow.
Full of practical content, the book emphasizes the advantages of Bayesian model comparison over traditional approaches, especially in quantifying evidence for competing hypotheses. Readers will also learn how to perform sensitivity analyses to assess the impact of different prior assumptions on their results.
By the end of the book, readers will get both the theoretical understanding and practical skills to implement Bayesian methods in their own research, making it an invaluable resource for both novice and experienced researchers studying Bayesian statistics.
商品描述(中文翻譯)
《貝葉斯統計:基礎知識》提供了一個全面且易於理解的貝葉斯統計入門,特別針對對統計方法感興趣的研究者。它涵蓋了貝葉斯推斷的理論基礎,並將其與傳統統計方法(如虛無假設顯著性檢驗)進行對比。這本書強調了關鍵概念,如先驗分佈(prior distribution)和後驗分佈(posterior distribution)、貝葉斯定理(Bayes' theorem)以及貝葉斯因子(Bayes factor),使得即使是數學背景較少的讀者也能理解。
在方法論上,這本書提供了如何使用免費軟體包 JASP 進行貝葉斯分析的實用逐步指南。每一章都專注於將貝葉斯方法應用於常見的研究設計,並使用真實世界的數據。讀者將從清晰的範例、視覺化圖形和 JASP 截圖中受益,這些都確保了學習體驗的互動性和易於跟隨。
這本書充滿了實用內容,強調了貝葉斯模型比較相對於傳統方法的優勢,特別是在量化競爭假設的證據方面。讀者還將學習如何進行敏感性分析,以評估不同先驗假設對其結果的影響。
在書籍結束時,讀者將獲得理論理解和實踐技能,以在自己的研究中實施貝葉斯方法,使其成為初學者和有經驗的研究者研究貝葉斯統計的寶貴資源。
作者簡介
Thomas J. Faulkenberry, PhD, is a professor of psychological sciences and associate dean of the College of Graduate Studies at Tarleton State University in Stephenville, TX (USA). A mathematician by training, he teaches courses on statistics and mathematical modeling in the behavioral sciences, and his primary research areas are mathematical cognition and Bayesian statistics.
作者簡介(中文翻譯)
托馬斯·J·福肯貝瑞 (Thomas J. Faulkenberry),博士,是美國德克薩斯州斯蒂芬維爾的塔爾頓州立大學(Tarleton State University)心理科學教授及研究生院副院長。他的專業背景為數學家,教授行為科學中的統計學和數學建模課程,主要研究領域為數學認知和貝葉斯統計。