Interactively Exploring High-Dimensional Data and Models in R
暫譯: 在 R 中互動式探索高維數據與模型

Cook, Dianne, Laa, Ursula

  • 出版商: CRC
  • 出版日期: 2026-04-07
  • 售價: $2,720
  • 貴賓價: 9.5$2,584
  • 語言: 英文
  • 頁數: 272
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032746092
  • ISBN-13: 9781032746098
  • 相關分類: Data-visualization
  • 尚未上市,無法訂購

相關主題

商品描述

Most data arrive with more than two numeric variables which means that plotting it on a computer screen or printed page presents a challenge: how do you visually explore for associations between more than two variables? Visualising data provides the opportunity to discover what we never expected, because it requires fewer assumptions to be made. Visualising elements of a model fit is a primary way to diagnose whether the fit matches this data. Two of more numeric variables is considered to be multivariate data, and when there are substantially more we would consider it to be high-dimensional data. This book provides you with the tools to visually explore high dimensions, to uncover associations, clustering and anomalies that may be missed when only using common methods for plotting one or two variables. It also illustrates how to use visualisation to understand how your model is operating on the data, to be able to explain how it is arriving at decisions. To make effective use of this material the reader should have a basic working knowledge of R and some understanding of multivariate statistical methods or machine learning methods. The book could form an independent course on visualization or be used as part of courses on multivariate statistical methods or machine learning.

High-dimensional data visualisation is valuable for understanding dimension reduction methods, unsupervised and supervised classification. This book is organised into these three topics, following overview and introductory chapters. The dimension reduction chapters cover principal component analysis and nonlinear dimension reduction. The chapters on cluster analysis cover hierarchical and k-means algorithms, model-based and self-organising maps, and finish with ways to communicate results and how to compare different results. The chapters on classification cover linear discriminant analysis, tree and forest algorithms, support vector machines and neural networks. We explain how to break down a neural network to examine the components, how to visualize predictive probabilities, and how to incorporate explainable AI metrics to develop a deeper understanding about how the model operates.

商品描述(中文翻譯)

大多數數據都包含兩個以上的數值變數,這意味著在電腦螢幕或印刷頁面上繪製這些數據會帶來挑戰:如何在多於兩個變數之間進行視覺探索以尋找關聯?數據視覺化提供了發現我們從未預期的機會,因為它需要做出更少的假設。視覺化模型擬合的元素是診斷擬合是否符合這些數據的主要方法。兩個或更多的數值變數被視為多變量數據,而當變數數量顯著增加時,我們會將其視為高維數據。本書為您提供了視覺探索高維數據的工具,以揭示在僅使用常見方法繪製一或兩個變數時可能會錯過的關聯、聚類和異常。它還說明了如何使用視覺化來理解您的模型如何在數據上運作,以便能夠解釋它是如何做出決策的。為了有效利用這些材料,讀者應具備基本的 R 語言工作知識以及對多變量統計方法或機器學習方法的某些理解。本書可以作為視覺化的獨立課程,或作為多變量統計方法或機器學習課程的一部分。

高維數據視覺化對於理解降維方法、無監督和監督分類非常有價值。本書分為這三個主題,並在概述和介紹章節之後進行組織。降維章節涵蓋主成分分析和非線性降維。聚類分析章節涵蓋層次聚類和 k-means 算法、基於模型的自組織映射,並以結果溝通和比較不同結果的方法結束。分類章節涵蓋線性判別分析、樹和森林算法、支持向量機和神經網絡。我們解釋了如何分解神經網絡以檢查其組件,如何視覺化預測概率,以及如何整合可解釋的 AI 指標,以深入了解模型的運作方式。

作者簡介

Dianne Cook and Ursula Laa have jointly published numerous papers on methodology for high-dimensional data visualisation in the past decade. This book is a result of these collaborations. Dianne Cook has been researching methods for data visualisation, particularly for exploratory data analysis, and data mining, for more than 30 years. She is a Distinguished Professor of Statistics at Monash University, Fellow of the American Statistical Association, past editor of the Journal of Computational and Graphical Statistics, and the R Journal, Board Member of the R Foundation, and elected member of the International Statistical Institute, and author of numerous R packages. Ursula Laa is an Assistant Professor at the Institute of Statistics of the University of Natural Resources and Life Sciences in Vienna. She works on new methods for the visualisation of multivariate data and models, and on interdisciplinary applications of statistics and data science methods in different fields.

作者簡介(中文翻譯)

Dianne Cook 和 Ursula Laa 在過去十年中共同發表了許多有關高維數據視覺化方法的論文。本書是這些合作的結果。Dianne Cook 在數據視覺化方法方面進行了超過 30 年的研究,特別是針對探索性數據分析和數據挖掘。她是莫納什大學的傑出統計學教授、美國統計協會的會士、計算與圖形統計期刊及 R Journal 的前編輯、R 基金會的董事會成員、國際統計學會的當選成員,以及多個 R 套件的作者。Ursula Laa 是維也納自然資源與生命科學大學統計學研究所的助理教授。她專注於多變量數據和模型的視覺化新方法,以及統計學和數據科學方法在不同領域的跨學科應用。