Data-Driven Decision Support System in Intelligent Healthcare
暫譯: 智能醫療中的數據驅動決策支持系統
Bhattacharyya, Debnath, Hu, Yu-Chen
- 出版商: CRC
- 出版日期: 2025-08-12
- 售價: $4,980
- 貴賓價: 9.5 折 $4,731
- 語言: 英文
- 頁數: 262
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032806273
- ISBN-13: 9781032806273
海外代購書籍(需單獨結帳)
相關主題
商品描述
Machine Intelligence with Generative AI is one of the most trending topics with applications in almost all fields of life. In healthcare, it is not only accelerating the development of new products, but also automating the generation of new and synthetic content making it easier to train and improve machine learning models.
Some of the biggest achievements of Generative AI in healthcare have been drug discovery, personalized care, differentially private synthetic data generation, operational efficiency, and many more. Generative AI models like Generative Adversarial Networks, and Variational Autoencoders are employed to generate synthetic medical images, aiding in data augmentation, facilitating disease diagnosis, and enabling advanced medical imaging research. Additionally, Generative AI techniques are being utilized for creating realistic electronic health records (EHRs) and simulated patient data, supporting privacy-preserving data sharing, and empowering innovative studies for personalized medicine and drug development. NLP models like ClinicalBERT use transformer-based deep learning architecture to understand and represent contextual information in large clinical text datasets, such as electronic health records (EHRs) and medical literature, and can better grasp medical terminologies, domain-specific language, and contextual nuances that are unique to the healthcare field.
This volume delves into the realm of Machine Intelligence with Generative AI and explores its impact on the healthcare industry.
商品描述(中文翻譯)
機器智慧與生成式人工智慧是當前最熱門的主題之一,應用範圍幾乎涵蓋生活的各個領域。在醫療保健方面,它不僅加速了新產品的開發,還自動化了新內容和合成內容的生成,使得訓練和改進機器學習模型變得更加容易。
生成式人工智慧在醫療保健領域的一些重大成就包括藥物發現、個性化護理、差異隱私合成數據生成、運營效率等。生成式人工智慧模型如生成對抗網絡(Generative Adversarial Networks)和變分自編碼器(Variational Autoencoders)被用來生成合成醫療影像,幫助數據增強、促進疾病診斷,並支持先進的醫學影像研究。此外,生成式人工智慧技術也被用於創建真實的電子健康紀錄(EHRs)和模擬病人數據,支持隱私保護的數據共享,並促進個性化醫療和藥物開發的創新研究。自然語言處理模型如ClinicalBERT使用基於變壓器的深度學習架構來理解和表示大型臨床文本數據集中的上下文信息,例如電子健康紀錄(EHRs)和醫學文獻,並能更好地掌握醫學術語、特定領域的語言以及醫療領域獨特的上下文細微差別。
本書深入探討機器智慧與生成式人工智慧的領域,並探索其對醫療保健行業的影響。
作者簡介
Debnath Bhattacharyya is a Professor in the Computer Science and Engineering Department, KL University, Bowrampet, Hyderabad, India. His research interests include Security Engineering, Pattern Recognition, Biometric Authentication, Multimodal Biometric Authentication, Data Mining and Image Processing.
Yu-Chen Hu is a Professor in the Department of Computer Science at Tunghai University, Taichung City, Taiwan. His interests include image and signal processing, data compression, information hiding, information security, computer network, deep learning, and data engineering.
作者簡介(中文翻譯)
Debnath Bhattacharyya 是印度海得拉巴 KL 大學計算機科學與工程系的教授。他的研究興趣包括安全工程、模式識別、生物識別認證、多模態生物識別認證、數據挖掘和圖像處理。
胡宇辰是台灣台中市東海大學計算機科學系的教授。他的研究興趣包括圖像與信號處理、數據壓縮、信息隱藏、信息安全、計算機網絡、深度學習和數據工程。