Risk and Predictive Analytics in Business with R
暫譯: 商業風險與預測分析:使用 R 語言
Araz, Ozgur M., Olson, David L.
- 出版商: CRC
- 出版日期: 2025-08-26
- 售價: $3,850
- 貴賓價: 9.5 折 $3,658
- 語言: 英文
- 頁數: 176
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032912693
- ISBN-13: 9781032912691
-
相關分類:
R 語言、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Supply chain operations face many risks, including political, environmental, and economic. The past five years have seen major challenges, from pandemic, impacts of global warming, wars, and tariff impositions. In this rapidly changing world, risks appear in every aspect of operations. This book presents data mining and analytics tools with R programming as well as a brief presentation of Monte Carlo simulation that can be used to anticipate and manage these risks. RStudio software and R programming language are widely used in data mining. For Monte Carlo simulation applications we cover Crystal Ball software, one of a number of commercially available Monte Carlo simulation tools.
Chapter 1 of this book deals with classification of risks. It includes a typical supply chain example published in academic literature. Chapter 2 gives a brief introduction to R programming. It is not intended to be comprehensive, but sufficient for a user to get started using this free open source and highly popular analytics tool. Chapter 3 discusses risks commonly found in finance, to include basic data mining tools applied to analysis of credit card fraud data. Like the other datasets used in the book, this data comes from the Kaggle.com site, a free site loaded with realistic datasets.
The remainder of the book covers risk analytics tools. Chapter 4 presents R association rule modeling using a supply chain related dataset. Chapter 5 presents Monte Carlo simulation of some supply chain risk situations. Chapter 6 gives both time series and multiple regression prediction models as well as autoregressive integrated moving average (ARIMA; Box-Jenkins) models in SAS and R. Chapter 7 covers classification models demonstrated with credit risk data. Chapter 8 deals with fraud detection and the common problem of modeling imbalanced datasets. Chapter 9 introduces Naïve Bayes modeling with categorical data using an employee attrition dataset.
Features:
- Overview of predictive analytics presented in an understandable manner
- Presentation of useful business applications of predictive data mining
- Coverage of risk management in finance, insurance, and supply chain contexts
- Presentation of predictive models
- Demonstration of using these predictive models in R
- Screenshots enabling readers to develop their own models
The purpose of the book is to present tools useful to analyze risks, especially those faced in supply chain management and finance.
商品描述(中文翻譯)
供應鏈運營面臨許多風險,包括政治、環境和經濟風險。在過去五年中,面臨了重大挑戰,包括疫情、全球暖化的影響、戰爭和關稅徵收。在這個快速變化的世界中,風險出現在運營的每一個方面。本書介紹了使用 R 程式語言的資料探勘和分析工具,以及簡要介紹的蒙地卡羅模擬,這些工具可以用來預測和管理這些風險。RStudio 軟體和 R 程式語言在資料探勘中被廣泛使用。對於蒙地卡羅模擬應用,我們涵蓋了 Crystal Ball 軟體,這是多種商業可用的蒙地卡羅模擬工具之一。
本書的第一章處理風險的分類。它包括一個在學術文獻中發表的典型供應鏈範例。第二章簡要介紹 R 程式語言。這一章並不打算全面,但足以讓使用者開始使用這個免費的開源且非常受歡迎的分析工具。第三章討論金融中常見的風險,包括應用於信用卡詐騙數據分析的基本資料探勘工具。與本書中使用的其他數據集一樣,這些數據來自 Kaggle.com 網站,這是一個免費的網站,提供大量真實的數據集。
本書的其餘部分涵蓋風險分析工具。第四章介紹了使用與供應鏈相關的數據集進行的 R 關聯規則建模。第五章介紹了一些供應鏈風險情境的蒙地卡羅模擬。第六章提供了時間序列和多重回歸預測模型,以及在 SAS 和 R 中的自回歸整合移動平均 (ARIMA; Box-Jenkins) 模型。第七章涵蓋了使用信用風險數據演示的分類模型。第八章處理詐騙檢測和建模不平衡數據集的常見問題。第九章介紹了使用員工流失數據集的朴素貝葉斯建模。
特點:
- 以易於理解的方式呈現預測分析概述
- 提供預測資料探勘的有用商業應用
- 涵蓋金融、保險和供應鏈背景下的風險管理
- 呈現預測模型
- 演示如何在 R 中使用這些預測模型
- 截圖幫助讀者開發自己的模型
本書的目的是提供有用的工具來分析風險,特別是在供應鏈管理和金融中面臨的風險。
作者簡介
Özgür M. Araz is the Ronald and Carol Cope Professor and Professor of Supply Chain Management and Analytics at the University of Nebraska-Lincoln. His research interests are systems simulation, business analytics, healthcare operations, and public health informatics.
David L. Olson is the James and H.K. Stuart Chancellor's Distinguished Chair in the Department of Supply Chain Management and Analytics at the University of Nebraska-Lincoln. His research interests are data mining, knowledge management, multiple criteria decision-making, and simulation modeling.
作者簡介(中文翻譯)
Özgür M. Araz 是內布拉斯加州林肯大學的 Ronald 和 Carol Cope 教授,以及供應鏈管理與分析的教授。他的研究興趣包括系統模擬、商業分析、醫療運營和公共衛生資訊學。
David L. Olson 是內布拉斯加州林肯大學供應鏈管理與分析系的 James 和 H.K. Stuart 校長特聘教授。他的研究興趣包括資料探勘、知識管理、多準則決策和模擬建模。