Bayesian Econometric Modelling for Big Data
暫譯: 大數據的貝葉斯計量經濟模型

Qian, Hang

  • 出版商: CRC
  • 出版日期: 2025-06-20
  • 售價: $3,990
  • 貴賓價: 9.5$3,791
  • 語言: 英文
  • 頁數: 488
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032915250
  • ISBN-13: 9781032915258
  • 相關分類: 大數據 Big-data機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book delves into scalable Bayesian statistical methods designed to tackle the challenges posed by big data. It explores a variety of divide-and-conquer and subsampling techniques, seamlessly integrating these scalable methods into a broad spectrum of econometric models.

In addition to its focus on big data, the book introduces novel concepts within traditional statistics, such as the summation, subtraction, and multiplication of conjugate distributions. These arithmetic operators conceptualize pseudo data in the conjugate prior, sufficient statistics that determine the likelihood, and the posterior as a balance between data and prior information, adding an intriguing dimension to Bayesian analysis. This book also offers a deep dive into Bayesian computation. Given the intricacies of floating-point representation of real numbers, computer programs can sometimes yield unexpected or theoretically impossible results. Drawing from his experience as a senior statistical software developer, the author shares valuable strategies for designing numerically stable algorithms.

The book is an essential resource for a diverse audience: graduate students seeking foundational knowledge in Bayesian econometric models, early-career statisticians eager to explore cutting-edge advancements in scalable Bayesian methods, data analysts struggling with out-of-memory challenges in large datasets, and statistical software users and developers striving to program with efficiency and numerical stability.

商品描述(中文翻譯)

這本書深入探討了可擴展的貝葉斯統計方法,旨在應對大數據所帶來的挑戰。它探索了各種分而治之和子抽樣技術,將這些可擴展的方法無縫整合到廣泛的計量經濟模型中。

除了專注於大數據外,本書還引入了傳統統計中的新概念,例如共軛分佈的加法、減法和乘法。這些算術運算符將共軛先驗中的偽數據、決定似然的充分統計量以及作為數據與先驗信息之間平衡的後驗概念化,為貝葉斯分析增添了一個引人入勝的維度。本書還深入探討了貝葉斯計算。考慮到實數的浮點表示的複雜性,計算機程序有時可能會產生意想不到或理論上不可能的結果。作者根據自己作為高級統計軟體開發者的經驗,分享了設計數值穩定算法的寶貴策略。

本書是多元讀者的重要資源:尋求貝葉斯計量經濟模型基礎知識的研究生、渴望探索可擴展貝葉斯方法前沿進展的初級統計學家、在大型數據集上面臨內存不足挑戰的數據分析師,以及努力以效率和數值穩定性進行編程的統計軟體使用者和開發者。

作者簡介

Hang Qian is the principal engineer of the Econometrics Toolbox for MATLAB and has been dedicated to statistical software development at MathWorks since 2012. He earned his PhD in economics, specializing in Bayesian statistics, big data analysis, and computational finance. His research has been published in journals such as Bayesian Analysis, Journal of Business & Economic Statistics, and Journal of Econometrics.

作者簡介(中文翻譯)

錢航是 MATLAB 的計量經濟學工具箱的首席工程師,自 2012 年以來一直致力於 MathWorks 的統計軟體開發。他獲得經濟學博士學位,專攻貝葉斯統計、大數據分析和計算金融。他的研究成果已發表於《貝葉斯分析》、《商業與經濟統計期刊》和《計量經濟學期刊》等期刊。