Interpretable and Trustworthy AI: Techniques and Frameworks
暫譯: 可解釋且值得信賴的人工智慧:技術與框架
Raj, Pethuru, Govardhanan, Kousalya, Sundaravadivazhagan, B.
- 出版商: Auerbach Publication
- 出版日期: 2025-11-11
- 售價: $8,490
- 貴賓價: 9.5 折 $8,066
- 語言: 英文
- 頁數: 402
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032960639
- ISBN-13: 9781032960630
-
相關分類:
AI Coding
海外代購書籍(需單獨結帳)
商品描述
Users expect proper explanation and interpretability of all the decisions being taken by machine and deep learning (ML/ DL) algorithms. Interpretable and Trustworthy AI: Techniques and Frameworks covers key requirements for interpretability and trustworthiness of AI models and how these needs can be met. This book is structured in three main sections exploring artificial intelligence's impact, limitations, and solutions.
The first section examines AI's role as a transformative technological paradigm. It explores how AI drives business advancement through intelligent software solutions, enabling automation, augmentation, and acceleration of IT-enabled business processes. The section establishes AI's fundamental capacity to envision and implement sustainable business transformations.
The second section addresses critical challenges in AI adoption, focusing on two key concerns:
- AI Interpretability: Models typically optimize for accuracy but struggle to capture real-world costs, especially regarding ethics and fairness. Interpretability features help understand model learning processes, available information, and decision justifications within real-world contexts.
- Trustworthy AI: Business leaders demand responsible AI solutions that prioritize human needs, safety, and privacy. Researchers are developing methods to enhance trust in AI models and their conclusions to accelerate adoption.
The final section presents techniques and approaches for creating sustainable, interpretable, and trustworthy AI models. It explores model- agnostic frameworks and methodologies designed to Trustworthy and Transparent AI, Explainable and Interpretable AI, Responsible AI, Generative AI, Agentic AI, and Efficient and Edge AI.
With its comprehensive structure, the book provides a comprehensive examination of AI's potential, its current limitations, and pathways to overcome these challenges for wider adoption.
商品描述(中文翻譯)
使用者期望對機器學習(ML)和深度學習(DL)演算法所做的所有決策提供適當的解釋和可解釋性。《可解釋且值得信賴的人工智慧:技術與框架》涵蓋了人工智慧模型可解釋性和可信賴性的關鍵需求,以及如何滿足這些需求。本書分為三個主要部分,探討人工智慧的影響、限制和解決方案。
第一部分檢視人工智慧作為一種變革性技術範式的角色。它探討了人工智慧如何通過智能軟體解決方案推動商業進步,使IT驅動的商業流程實現自動化、增強和加速。該部分確立了人工智慧在構想和實施可持續商業轉型方面的基本能力。
第二部分針對人工智慧採用中的關鍵挑戰,重點關注兩個主要問題:
- 人工智慧可解釋性:模型通常優化準確性,但在捕捉現實世界成本方面存在困難,特別是在倫理和公平性方面。可解釋性特徵有助於理解模型的學習過程、可用資訊和在現實世界背景下的決策理由。
- 值得信賴的人工智慧:商業領導者要求負責任的人工智慧解決方案,優先考慮人類需求、安全性和隱私。研究人員正在開發方法,以增強對人工智慧模型及其結論的信任,以加速採用。
最後一部分介紹了創建可持續、可解釋且值得信賴的人工智慧模型的技術和方法。它探討了設計用於值得信賴和透明的人工智慧、可解釋和可解釋的人工智慧、負責任的人工智慧、生成式人工智慧、代理式人工智慧以及高效和邊緣人工智慧的模型無關框架和方法論。
本書以其全面的結構,對人工智慧的潛力、當前限制以及克服這些挑戰以促進更廣泛採用的途徑進行了全面的檢視。
作者簡介
Dr. Pethuru Raj is chief architect at the Edge AI Division of Reliance Jio Platforms Ltd, Bangalore, India.
Dr. Kousalya Govardhanan is a professor and dean of research-SKI at Sri Krishna College of Engineering and Technology, Coimbatore, India.
Dr. B. Sundaravadivazhagan is affiliated with the Department of Information Technology, The University of Technology and Applied Sciences-Al Mussanah, Oman.
Dr. Shubham Mahajan is an assistant professor at the Amity School of Engineering & Technology, Amity University, Haryana, India.
Dr. M. Nalini is an associate professor at the Department of Computer Science and Business Systems, S.A. Engineering College, Tamil Nadu, India.
作者簡介(中文翻譯)
Dr. Pethuru Raj 是印度班加羅爾 Reliance Jio Platforms Ltd 邊緣人工智慧部門的首席架構師。
Dr. Kousalya Govardhanan 是印度科印巴託爾 Sri Krishna 工程與技術學院的教授及研究院院長。
Dr. B. Sundaravadivazhagan 隸屬於阿曼科技與應用科學大學資訊科技系。
Dr. Shubham Mahajan 是印度哈里亞納邦 Amity 大學 Amity 工程與技術學院的助理教授。
Dr. M. Nalini 是印度泰米爾納德邦 S.A. 工程學院計算機科學與商業系的副教授。