When Nlp Meets LLM: Neural Approaches to Context-Based Conversational Question Answering
暫譯: 當 NLP 遇上 LLM:基於上下文的對話式問答的神經方法
Zaib, Munazza, Sheng, Quan Z., Zhang, Wei Emma
- 出版商: CRC
- 出版日期: 2025-10-15
- 售價: $2,880
- 貴賓價: 9.5 折 $2,736
- 語言: 英文
- 頁數: 102
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032970847
- ISBN-13: 9781032970844
-
相關分類:
Natural Language Processing
海外代購書籍(需單獨結帳)
商品描述
This book looks at conversational search in intelligent dialogue systems, as it investigates and addresses the challenges pertinent to effective context incorporation in conversational question answering (ConvQA). The authors explore the possibility of designing a scalable Conversational Question Answering Agent that can handle the challenges of incomplete/ambiguous questions, better able to relate to co-references to cope with the problems of effective weights and optimal threshold selection in vehicular networks. A fundamental emphasis is the understanding of ambiguous follow-up questions and the generation of contextual and question entities to fill in the missing information gaps. Key topics are studied, such as 'hard history selection' to filter out the context that is not relevant and performing a re-ranking of the selected turns based on their significance to answer the question as a part of the soft history selection process.
This book aims to demonstrate that the history selection and modelling approaches proposed can effectively improve the performance of ConvQA models in different settings. The proposed models are compared with the state-of-the-art vis-à-vis different conversational datasets and provide new insights into conversational information retrieval. Through a systematic study of structured representations, entity-aware history selection, and open-domain passage retrieval using contrastive learning, this book presents a robust framework for advancing multi-turn QA systems.
It is an essential resource for researchers, practitioners, and graduate students working at the intersection of NLP, dialogue systems, and intelligent information access.
商品描述(中文翻譯)
本書探討智能對話系統中的對話搜尋,並研究與解決在對話問答(Conversational Question Answering, ConvQA)中有效整合上下文所面臨的挑戰。作者探索設計一個可擴展的對話問答代理的可能性,該代理能夠處理不完整或模糊的問題,更好地關聯共指,以應對在車輛網絡中有效權重和最佳閾值選擇的問題。本書的基本重點在於理解模糊的後續問題,以及生成上下文和問題實體以填補缺失的信息空白。研究的關鍵主題包括「困難歷史選擇」(hard history selection),以過濾掉不相關的上下文,並根據其對回答問題的重要性對所選的回合進行重新排序,作為軟歷史選擇過程的一部分。
本書旨在展示所提出的歷史選擇和建模方法能有效改善不同環境下的ConvQA模型性能。所提出的模型與最先進的技術進行比較,針對不同的對話數據集,並提供對對話信息檢索的新見解。通過對結構化表示、實體感知歷史選擇和使用對比學習的開放域段落檢索進行系統性研究,本書提出了一個穩健的框架,以推進多輪問答系統。
這是一本對於從事自然語言處理(NLP)、對話系統和智能信息訪問交叉領域的研究人員、實務工作者和研究生來說,必不可少的資源。
作者簡介
Munazza Zaib is currently a Postdoctoral Research Fellow at the Department of Human Centred Computing, Faculty of Information Technology, Monash University, Australia.
Quan Z. Sheng is a Distinguished Professor and Head of School of Computing at Macquarie University, Australia. ). He is the recipient of the AMiner Most Influential Scholar Award on IoT (2007-2017), ARC (Australian Research Council) Future Fellowship (2014).
Wei Emma Zhang is Associate Head of People and Culture at the School of Computer and Mathematical Sciences, and a researcher at the Australian Institute for Machine Learning, the University of Adelaide.
Adnan Mahmood is a Lecturer in Computing - IoT and Networking at the School of Computing, Macquarie University, Sydney.
作者簡介(中文翻譯)
Munazza Zaib 目前是澳洲莫納許大學資訊科技學院人本計算系的博士後研究員。
Quan Z. Sheng 是澳洲麥考瑞大學計算學院的傑出教授及院長。他曾獲得AMiner物聯網(IoT)最具影響力學者獎(2007-2017)及ARC(澳洲研究委員會)未來研究獎學金(2014)。
Wei Emma Zhang 是澳洲阿德萊德大學計算與數學科學學院人員與文化的副院長,並且是澳洲機器學習研究所的研究員。
Adnan Mahmood 是澳洲麥考瑞大學計算學院的物聯網與網路講師。