Foundations of Multiple Regression and Analysis of Variance
暫譯: 多重迴歸與變異數分析基礎
Lamotte, Lynn Roy
- 出版商: CRC
- 出版日期: 2025-09-25
- 售價: $4,390
- 貴賓價: 9.5 折 $4,171
- 語言: 英文
- 頁數: 272
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032981520
- ISBN-13: 9781032981529
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
商品描述
This book provides a rigorous development of the foundations of linear models for multiple regression and Analysis of Variance (ANOVA), based on orthogonal projections and relations among linear subspaces. It is appropriate for the linear models course required in most statistics Ph.D. programs.
The presentation is particularly accessible because it is self-contained, general, and taken in logical steps that are linked directly to practicable computations. The broad objective is to provide a path of mastery so that the reader could, if stranded on a desert isle with nothing but pencil, paper, and a computer to perform matrix sums and products, replicate general linear models procedures in extant statistical computing packages.
The primary prerequisite is mathematical maturity, which includes logical thinking and the ability to tell when a proof is a proof. Casual acquaintance with matrices would be helpful but not required. Background in basic statis- tical theory and methods is assumed, mainly for familiarity with terminology and the purposes of statistics in applications.
The material is developed as a series of propositions, each dependent only on those preceding it. The reader is strongly encouraged to prove each one independently. Mastery requires active involvement.
As part of the broad coverage of the mathematics supporting multiple regression and ANOVA, those propositions also establish several new, key results.
-There is a unique, best numerator sum of squares for testing an estimable function.
-The extra residual sum of squares due to imposing a linear hypothesis tests exclusively the estimable part.
-Models that include exclusively any given set of ANOVA effects can be formulated with contrast coding.
-Tests of any ANOVA effects in any design and model, including unbalanced and empty cells, can be had with extra residual sum of squares due to deleting predictor variables.
-Essential properties of Type III methods are identified and proven.
Lynn Roy LaMotte is Professor Emeritus in the Biostatistics Program, School of Public Health, LSU Health-New Orleans. Elected Fellow of the American Statistical Association, 1985, for "important, innovative, seminal, and diverse contributions to the theory and application of linear statistical models," he is author of about 100 articles in diverse academic journals, cited more than 2,000 times, nearly 500 since 2020.
商品描述(中文翻譯)
這本書提供了基於正交投影和線性子空間之間關係的多重迴歸和變異數分析(ANOVA)線性模型基礎的嚴謹發展,適合大多數統計學博士課程所需的線性模型課程。
本書的呈現特別易於理解,因為它是自成一體的、通用的,並且以邏輯步驟進行,這些步驟直接與可行的計算相連。其廣泛的目標是提供一條掌握的途徑,使讀者即使在荒島上只有鉛筆、紙和一台能執行矩陣加法和乘法的電腦,也能重現現有統計計算包中的一般線性模型程序。
主要的先決條件是數學成熟度,包括邏輯思維和辨別證明是否為證明的能力。對矩陣的基本了解會有幫助,但不是必需的。假設具備基本統計理論和方法的背景,主要是為了熟悉術語和統計在應用中的目的。
這些材料以一系列命題的形式發展,每個命題僅依賴於前面的命題。強烈建議讀者獨立證明每一個命題。掌握需要積極參與。
作為支持多重迴歸和ANOVA的數學廣泛涵蓋的一部分,這些命題還建立了幾個新的關鍵結果。
- 測試可估計函數的最佳分子平方和是唯一的。
- 由於施加線性假設而產生的額外殘差平方和專門測試可估計部分。
- 僅包含任何給定的ANOVA效應的模型可以通過對比編碼來制定。
- 在任何設計和模型中,包括不平衡和空單元,對任何ANOVA效應的測試可以通過刪除預測變數而獲得額外的殘差平方和。
- 確定並證明了第三類方法的基本特性。
Lynn Roy LaMotte是路易斯安那州立大學健康科學中心公共衛生學院生物統計學項目的名譽教授。1985年當選美國統計協會會士,因其對線性統計模型理論和應用的重要、創新、開創性和多樣化貢獻,他在各種學術期刊上發表了約100篇文章,自2020年以來被引用近500次,總引用次數超過2000次。
作者簡介
Lynn Roy LaMotte is Professor Emeritus in the Biostatistics Program, School of Public Health, LSU Health-New Orleans. Elected Fellow of the American Statistical Association, 1985, for "important, innovative, seminal, and diverse contributions to the theory and application of linear statistical models," he is author of about 100 articles in diverse academic journals, cited more than 2,000 times, nearly 500 since 2020.
作者簡介(中文翻譯)
Lynn Roy LaMotte 是路易斯安那州立大學健康科學中心新奧爾良公共衛生學院生物統計學計畫的名譽教授。他於1985年被選為美國統計學會的會士,因其對線性統計模型的理論和應用做出了「重要、創新、開創性和多樣化的貢獻」。他在各類學術期刊上發表了約100篇文章,自2020年以來被引用近500次,總引用次數超過2,000次。