Applied Statistics with Python: Volume II: Multivariate Models
暫譯: 應用統計學與 Python:第二卷:多變量模型

Kaganovskiy, Leon

  • 出版商: CRC
  • 出版日期: 2025-12-28
  • 售價: $4,480
  • 貴賓價: 9.5$4,256
  • 語言: 英文
  • 頁數: 302
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 104100625X
  • ISBN-13: 9781041006251
  • 相關分類: Python
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Applied Statistics with Python, Volume II focuses on ANOVA, multivariate models such as multiple regression, model selection, and reduction techniques, regularization methods like lasso and ridge, logistic regression, K-nearest neighbors (KNN), support vector classifiers, nonlinear models, tree-based methods, clustering, and principal component analysis.

As in Volume I, the Python programming language is used throughout due to its flexibility
and widespread adoption in data science and machine learning. The book relies heavily on
tools from the standard sklearn package, which are integrated directly into the discussion.
Unlike many other resources, Python is not treated as an add-on, but as an organic part of the
learning process.

This book is based on the author's 15 years of experience teaching statistics and is designed
for undergraduate and first-year graduate students in fields such as business, economics,
biology, social sciences, and natural sciences. However, more advanced students and
professionals might also find it valuable. While some familiarity with basic statistics is helpful, it is not required--core concepts are introduced and explained along the way, making the material accessible to a wide range of learners.

Key Features:
- Employs Python as an organic part of the learning process
- Removes the tedium of hand/calculator computations
- Weaves code into the text at every step in a clear and accessible way
- Covers advanced machine-learning topics
- Uses tools from Standardized sklearn Python package

商品描述(中文翻譯)

《應用統計學與 Python,第二卷》專注於 ANOVA、多變量模型如多重回歸、模型選擇和降維技術、正則化方法如 lasso 和 ridge、邏輯回歸、K 最近鄰 (KNN)、支持向量分類器、非線性模型、基於樹的方法、聚類和主成分分析。

與第一卷相同,整本書都使用 Python 程式語言,因為它在數據科學和機器學習中的靈活性和廣泛應用。這本書大量依賴標準的 sklearn 套件中的工具,這些工具直接融入討論中。與許多其他資源不同,Python 並不是作為附加內容來處理,而是作為學習過程中的有機部分。

本書基於作者 15 年的統計教學經驗,旨在為商業、經濟學、生物學、社會科學和自然科學等領域的本科生和一年級研究生設計。然而,更高級的學生和專業人士也可能會覺得它有價值。雖然對基本統計的某些熟悉程度是有幫助的,但並不是必需的——核心概念會在過程中介紹和解釋,使材料對各種學習者都能夠理解。

主要特點:
- 將 Python 作為學習過程中的有機部分
- 消除了手動/計算器計算的乏味
- 在每一步中以清晰易懂的方式將程式碼融入文本
- 涵蓋高級機器學習主題
- 使用標準化的 sklearn Python 套件中的工具

作者簡介

Leon Kaganovskiy is an Associate Professor at the Mathematics Department of Touro College. He received a M.S. in Theoretical Physics from Kharkov State University, and M.S. and PhD in Applied Mathematics from the University of Michigan. His most recent interest is in a broad field of Applied Statistics, and he has developed new courses in Bio-Statistics with R, Statistics for Actuaries with R, and Business Analytics with R. He teaches Statistics research courses at the Graduate Program in Speech-Language Pathology at Touro College.

作者簡介(中文翻譯)

Leon Kaganovskiy 是圖羅學院數學系的副教授。他在哈爾科夫國立大學獲得理論物理碩士學位,並在密西根大學獲得應用數學碩士及博士學位。他最近的研究興趣涵蓋應用統計的廣泛領域,並開發了新的課程,包括使用 R 的生物統計、使用 R 的精算統計以及使用 R 的商業分析。他在圖羅學院的語言病理學研究生課程中教授統計研究課程。