Deep Learning Models for Economic Research
暫譯: 經濟研究的深度學習模型

Dudek, Andrzej

  • 出版商: Routledge
  • 出版日期: 2025-10-21
  • 售價: $7,280
  • 貴賓價: 9.5$6,916
  • 語言: 英文
  • 頁數: 464
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1041062702
  • ISBN-13: 9781041062707
  • 相關分類: DeepLearning經濟學 Economy
  • 海外代購書籍(需單獨結帳)

商品描述

In today's data-driven world, the ability to make sense of complex, high-dimensional datasets is crucial for economists and data scientists. Traditional quantitative methods, while powerful, often struggle to keep up with the complexities of modern economic challenges. This book bridges this gap, integrating cutting-edge machine learning techniques with established economic analysis to provide new, more accurate insights.

The book offers a comprehensive approach to understanding and applying neural networks and deep learning models in the context of conducting economic research. It starts by laying the groundwork with essential quantitative methods such as cluster analysis, regression, and factor analysis, then demonstrates how these can be enhanced with deep learning techniques like recurrent neural networks (RNNs), convolutional neural networks (CNNs), and transformers. By guiding readers through real-world examples, complete with Python code and access to datasets, it showcases the practical benefits of neural networks in solving complex economic problems, such as fraud detection, sentiment analysis, stock price forecasting, and inflation factor analysis. Importantly, the book also addresses critical concerns about the "black box" nature of deep learning, offering interpretability techniques like LIME and SHAP to demystify model predictions.

The book is essential reading for economists, data scientists, and professionals looking to deepen their understanding of AI's role in economic modelling. It is also an accessible resource for non-experts interested in how machine learning is transforming economic analysis.

商品描述(中文翻譯)

在當今以數據為驅動的世界中,理解複雜的高維數據集的能力對於經濟學家和數據科學家來說至關重要。傳統的定量方法雖然強大,但往往難以跟上現代經濟挑戰的複雜性。本書填補了這一空白,將尖端的機器學習技術與既有的經濟分析相結合,提供新的、更準確的見解。

本書提供了一個全面的方法來理解和應用神經網絡及深度學習模型,以進行經濟研究。它首先奠定基礎,介紹基本的定量方法,如聚類分析、回歸分析和因子分析,然後展示如何利用深度學習技術(如循環神經網絡 RNN、卷積神經網絡 CNN 和變壓器)來增強這些方法。通過引導讀者參與真實世界的案例,並提供 Python 代碼和數據集的訪問,本書展示了神經網絡在解決複雜經濟問題(如詐騙檢測、情感分析、股價預測和通脹因素分析)中的實際好處。重要的是,本書還解決了有關深度學習「黑箱」特性的關鍵問題,提供了可解釋性技術,如 LIME 和 SHAP,以揭開模型預測的神秘面紗。

本書是經濟學家、數據科學家和希望深入了解人工智慧在經濟建模中角色的專業人士必讀的資料。對於對機器學習如何改變經濟分析感興趣的非專家來說,它也是一本易於接觸的資源。

作者簡介

Andrzej Dudek is a Professor in the Department of Computer Science and Econometrics, Wroclaw University of Economics and Business, Wroclaw, Poland.

作者簡介(中文翻譯)

安德烈·杜德克是波蘭弗羅茨瓦夫經濟與商業大學計算機科學與計量經濟學系的教授。