Family of High-Ordered Integer-Valued Auto-Regressive Models and Applications
暫譯: 高階整數值自回歸模型及其應用
Soobhug, Ashwinee Devi, Mamode Khan, Naushad, Yuvraj, Sunecher
- 出版商: CRC
- 出版日期: 2026-03-17
- 售價: $4,760
- 貴賓價: 9.8 折 $4,664
- 語言: 英文
- 頁數: 158
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1041150555
- ISBN-13: 9781041150558
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book tackles the complexities of integer-valued time series analysis, focusing on over-dispersion, excess zeros, and non-stationarity. It explores high-ordered INAR(p) models with diverse thinning mechanisms and innovation distributions, finding CML superior for inference. Addressing periodicity, harmonic functions are introduced for COVID-19 data. Novel BINAR(1) models with BPWE and SPWE innovations are applied to stock transactions, while new BPGL and SPGL bivariate distributions analyse crime data.
The book derives methodologies, tests performance via simulation, and provides real-life applications, filling a gap in existing literature. This comprehensive work significantly advances the field of integer-valued time series analysis by addressing key challenges such as over-dispersion and periodicity. The detailed exploration of high-ordered INAR(p) models under various thinning mechanisms and innovation distributions provides valuable insights into their performance, with the clear outperformance of the CML inferential method offering practical guidance for researchers. The innovative incorporation of harmonic functions to model the periodic nature of the COVID-19 data in Mauritius demonstrates a crucial adaptation to real-world phenomena. Furthermore, the development and application of novel BINAR(1) models and bivariate distributions like BPGL and SPGL expand the analytical toolkit for understanding the relationships between multiple integer-valued series, exemplified by their application to stock transactions and crime data. By deriving new methodologies, rigorously testing their performance through simulation, and illustrating their utility with diverse real-life applications, this book offers substantial theoretical and practical contributions to the field, addressing limitations in existing literature.
The target audience includes researchers, statisticians, and practitioners working with count data and time series analysis in fields like econometrics, finance, epidemiology, and criminology.
商品描述(中文翻譯)
這本書探討了整數值時間序列分析的複雜性,重點關注過度離散、過多零值和非平穩性。它探索了具有多樣化稀疏機制和創新分佈的高階 INAR(p) 模型,發現 CML 在推斷上表現優越。針對週期性,書中引入了和諧函數來分析 COVID-19 數據。新穎的 BINAR(1) 模型結合 BPWE 和 SPWE 創新應用於股票交易,而新的 BPGL 和 SPGL 雙變量分佈則用於分析犯罪數據。
本書推導了方法論,通過模擬測試其性能,並提供了現實應用,填補了現有文獻中的空白。這部綜合性著作顯著推進了整數值時間序列分析領域,解決了過度離散和週期性等關鍵挑戰。對於各種稀疏機制和創新分佈下的高階 INAR(p) 模型的詳細探討,提供了對其性能的寶貴見解,CML 推斷方法的明顯優越性為研究人員提供了實用指導。將和諧函數創新性地納入以建模毛里求斯 COVID-19 數據的週期性特徵,展示了對現實現象的關鍵適應。此外,開發和應用新穎的 BINAR(1) 模型及如 BPGL 和 SPGL 的雙變量分佈,擴展了理解多個整數值序列之間關係的分析工具,這在股票交易和犯罪數據的應用中得到了體現。通過推導新方法、嚴格測試其性能並用多樣的現實應用來說明其效用,本書對該領域提供了實質性的理論和實踐貢獻,解決了現有文獻中的局限性。
目標讀者包括研究人員、統計學家和在計數數據及時間序列分析方面工作的實務者,涵蓋經濟計量學、金融、流行病學和犯罪學等領域。
作者簡介
Ashwinee Devi Soobhug works as a Statistician/Senior Statistician at Statistics Mauritius She is affiliated with the Ministry of Finance, Economic Planning and Development in Port Louis, Mauritius. She is a prominent academic researcher known for her significant contributions to the fields of statistics and public health.
Naushad Mamode Khan is an Associate Professor in Statistics, at the University of Mauritius. His research interests are statistical modelling and computing applied to integer-valued time series modelling.
Sunecher Yuvraj is a Senior Lecturer of Finance and Statistics of the University of Technology Mauritius since 2011. He received his Post Doctorate in Statistical Modelling from the University of Bahia, Ph.D in Statistics from the University of Mauritius, Master in Business Administration from the Management College of South Africa, Master in Financial Economics and Degree in Mathematics from the University of Mauritius.
作者簡介(中文翻譯)
Ashwinee Devi Soobhug 擔任毛里求斯統計局的統計師/高級統計師,隸屬於毛里求斯路易港的財政、經濟規劃與發展部。她是一位著名的學術研究者,以其在統計學和公共衛生領域的重要貢獻而聞名。
Naushad Mamode Khan 是毛里求斯大學的統計學副教授。他的研究興趣包括應用於整數值時間序列建模的統計建模和計算。
Sunecher Yuvraj 自2011年以來擔任毛里求斯科技大學的金融與統計高級講師。他在巴伊亞大學獲得統計建模的博士後學位,在毛里求斯大學獲得統計學博士學位,在南非管理學院獲得工商管理碩士學位,以及在毛里求斯大學獲得金融經濟學碩士學位和數學學位。