Deep-Learning-Assisted Statistical Methods with Examples in R
暫譯: 深度學習輔助的統計方法:R範例解析
Zhan, Tianyu
- 出版商: CRC
- 出版日期: 2026-03-17
- 售價: $2,960
- 貴賓價: 9.8 折 $2,900
- 語言: 英文
- 頁數: 156
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1041158432
- ISBN-13: 9781041158431
-
相關分類:
DeepLearning、R 語言
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book explores how deep learning enhances statistical methods for hypothesis testing, point estimation, optimization, interpretation, and other aspects. It uniquely demonstrates leveraging deep learning to improve traditional statistical approaches, showcasing their superior performance in practical applications. Each topic includes essential background, clear method explanations, and detailed R code demonstrations through case studies. This allows readers to directly apply these methods to their own challenges and easily adapt the underlying principles to related problems.
This book delves into statistical inference, introducing advanced strategies for hypothesis testing and point estimation. These innovative methods ingeniously combine both artificial and human intelligence, offering robust solutions for scenarios where traditional optimal analytical solutions are elusive or non-existent. A prime example of their real-world impact is in adaptive clinical trials, where these computational approaches can be readily implemented to optimize trial design and outcomes. The author further explores the multifaceted benefits of deep-learning-assisted statistical methods, extending beyond mere statistical efficiency. It highlights crucial features such as integrity protection, ensuring the trustworthiness of results; computational efficiency, enabling faster and more scalable analyses; and interpretability, which is increasingly vital for transparent communication of complex findings in modern statistics. This section encourages readers to consider a broader spectrum of improvements for new statistical methods, focusing on attributes that enhance their practical utility and societal relevance. Finally, the reader is given a critical examination of the limitations and potential concerns associated with the methods presented in earlier chapters. Crucially, it doesn't just identify these issues but also offers constructive mitigation approaches. This equips readers with essential techniques to safeguard AI-based methodologies with their scientific expertise, ensuring responsible and valid application of these powerful computational tools in diverse scientific and practical domains.
This book is a valuable resource for students, practitioners, and researchers integrating statistics and data science techniques to solve impactful real-world problems.
商品描述(中文翻譯)
這本書探討深度學習如何增強假設檢定、點估計、優化、解釋及其他方面的統計方法。它獨特地展示了如何利用深度學習來改善傳統統計方法,並展示其在實際應用中的卓越表現。每個主題都包括必要的背景知識、清晰的方法解釋,以及通過案例研究提供的詳細 R 語言代碼示範。這使讀者能夠直接將這些方法應用於自己的挑戰,並輕鬆調整其基本原則以應對相關問題。
本書深入探討統計推斷,介紹假設檢定和點估計的進階策略。這些創新方法巧妙地結合了人工智慧和人類智慧,為傳統最佳分析解決方案難以獲得或不存在的情境提供了穩健的解決方案。其在現實世界中的一個主要例子是自適應臨床試驗,這些計算方法可以輕鬆實施以優化試驗設計和結果。作者進一步探討了深度學習輔助統計方法的多方面好處,超越了單純的統計效率。它突顯了關鍵特徵,如完整性保護,確保結果的可信度;計算效率,使分析更快且可擴展;以及可解釋性,這在現代統計中對於透明溝通複雜發現越來越重要。本節鼓勵讀者考慮新統計方法的更廣泛改進,專注於增強其實用性和社會相關性的屬性。最後,讀者將對早期章節中所呈現方法的限制和潛在問題進行批判性檢視。重要的是,它不僅識別這些問題,還提供建設性的緩解方法。這使讀者具備必要的技術,以其科學專業知識來保護基於 AI 的方法論,確保這些強大的計算工具在各種科學和實際領域中的負責任和有效應用。
這本書是學生、從業者和研究人員整合統計和數據科學技術以解決影響深遠的現實問題的寶貴資源。
作者簡介
Tianyu Zhan is a Director at AbbVie Inc. He earned his Ph.D. in Biostatistics from the University of Michigan Ann Arbor in 2017. His research interests are closely related to late-phase clinical trials. He has been actively promoting innovative clinical trial designs and advanced analysis methods at AbbVie, resulting in significant business impacts.
作者簡介(中文翻譯)
詹天宇是AbbVie Inc.的董事。他於2017年在密西根大學安娜堡校區獲得生物統計學博士學位。他的研究興趣與晚期臨床試驗密切相關。他在AbbVie積極推廣創新的臨床試驗設計和先進的分析方法,對業務產生了重大影響。