Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning 2nd Edition
暫譯: Python 機器學習食譜:從預處理到深度學習的實用解決方案(第二版)
Gallatin, Kyle, Albon, Chris
- 出版商: O'Reilly
- 出版日期: 2023-09-05
- 定價: $2,780
- 售價: 9.5 折 $2,641
- 貴賓價: 9.0 折 $2,502
- 語言: 英文
- 頁數: 413
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098135725
- ISBN-13: 9781098135720
-
相關分類:
Machine Learning、Python
立即出貨
買這商品的人也買了...
-
$505Processing 編程學習指南(原書第2版) -
$1,680Practical Deep Learning: A Python-Based Introduction -
$479Java 從入門到精通, 6/e -
Developing Graphics Frameworks with Python and OpenGL (Hardcove)$4,200$3,990 -
學好跨平台網頁設計 -- HTML5、CSS3、JavaScript、jQuery 與Bootstrap 5 超完美特訓班, 3/e (附範例/RWD影音教學)$500$395 -
$2,592Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images (Paperback) -
$2,070AI and Machine Learning for On-Device Development: A Programmer's Guide -
Optimizing Visual Studio Code for Python Development: Developing More Efficient and Effective Programs in Python$2,233$2,115 -
Deep Learning with Python, 2/e (Paperback)$2,280$2,166 -
電腦圖形學入門 3D渲染指南$539$512 -
電腦視覺機器學習實務|建立端到端的影像機器學習 (Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images)$780$616 -
Python 桌面開發王者 - Qt 6 全方位實例應用開發$1,200$948 -
Learn Three.js : Program 3D animations and visualizations for the web with JavaScript and WebGL, 4/e (Paperback)$1,950$1,853 -
Python + ChatGPT 零基礎 + 高效率學程式設計與運算思維, 3/e$780$616 -
Hands-On Computer Vision with Detectron2: Develop object detection and segmentation models with a code and visualization approach$1,690$1,606 -
AI 繪圖夢工廠 :Midjourney、Stable Diffusion、Leonardo. ai × ChatGPT 超應用 神技$630$498 -
Blender 3D Asset Creation for the Metaverse: Unlock endless possibilities with 3D object creation, including metaverse characters and avatar models (Paperback)$2,100$1,995 -
$1,935Designing Deep Learning Systems: A Software Engineer's Guide -
從 AI 到 生成式 AI:40個零程式的實作體驗,培養新世代人工智慧素養$560$442 -
ChatGPT 開發手冊 - 用 OpenAI API ‧ LangChain ‧ Embeddings 設計 Plugin、LINE/Discord bot、股票分析與客服自動化助理$750$593 -
ChatGPT × 遊戲設計概論$720$562 -
ChatGPT-4 與 Bing Chat - 創新體驗文字/繪圖/音樂/動畫/影片的AI世界$520$411 -
ChatGPT 4 + API 創新體驗 AI 世界邁向開發機器人程式王者歸來(全彩印刷)$780$616 -
Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT and other LLMs (Paperback)$1,980$1,881 -
$2,520AI Engineering : Building Applications with Foundation Models (Paperback)
相關主題
商品描述
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks.
Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications.
You'll find recipes for:
- Vectors, matrices, and arrays
- Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources
- Handling numerical and categorical data, text, images, and dates and times
- Dimensionality reduction using feature extraction or feature selection
- Model evaluation and selection
- Linear and logical regression, trees and forests, and k-nearest neighbors
- Support vector machines (SVM), naive Bayes, clustering, and tree-based models
- Saving and loading trained models from multiple frameworks
商品描述(中文翻譯)
這本實用指南提供了超過 200 個獨立的範例,幫助您解決在工作中可能遇到的機器學習挑戰。如果您對 Python 及其庫(包括 pandas 和 scikit-learn)感到熟悉,您將能夠從加載數據到訓練模型及利用神經網絡,針對特定問題進行處理。
這個更新版中的每個範例都包含可以複製、粘貼並使用玩具數據集運行的代碼,以確保其有效性。從那裡,您可以根據自己的使用案例或應用程序調整這些範例。範例中包含的討論解釋了解決方案並提供有意義的背景。超越理論和概念,學習構建可運行的機器學習應用所需的細節。
您將找到以下範例:
- 向量、矩陣和數組
- 處理來自 CSV、JSON、SQL、數據庫、雲存儲和其他來源的數據
- 處理數值和類別數據、文本、圖像以及日期和時間
- 使用特徵提取或特徵選擇進行降維
- 模型評估和選擇
- 線性和邏輯回歸、樹和森林、以及 k 最近鄰
- 支持向量機(SVM)、朴素貝葉斯、聚類和基於樹的模型
- 從多個框架保存和加載訓練好的模型