Implementing Mlops in the Enterprise: A Production-First Approach
Haviv, Yaron, Gift, Noah
- 出版商: O'Reilly|英文2書85折
- 出版日期: 2024-01-09
- 定價: $2,700
- 售價: 9.5 折 $2,565
- 貴賓價: 9.0 折 $2,430
- 語言: 英文
- 頁數: 377
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098136586
- ISBN-13: 9781098136581
-
相關分類:
Machine Learning、Data Science
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$2,070Training Data for Machine Learning: Human Supervision from Annotation to Data Science
-
$2,575$2,439 -
$580$458 -
$1,500$1,425
相關主題
商品描述
With demand for scaling, real-time access, and other capabilities, businesses need to consider building operational machine learning pipelines. This practical guide helps your company bring data science to life for different real-world MLOps scenarios. Senior data scientists, MLOps engineers, and machine learning engineers will learn how to tackle challenges that prevent many businesses from moving ML models to production.
Authors Yaron Haviv and Noah Gift take a production-first approach. Rather than beginning with the ML model, you'll learn how to design a continuous operational pipeline, while making sure that various components and practices can map into it. By automating as many components as possible, and making the process fast and repeatable, your pipeline can scale to match your organization's needs.
You'll learn how to provide rapid business value while answering dynamic MLOps requirements. This book will help you:
- Learn the MLOps process, including its technological and business value
- Build and structure effective MLOps pipelines
- Efficiently scale MLOps across your organization
- Explore common MLOps use cases
- Build MLOps pipelines for hybrid deployments, real-time predictions, and composite AI
- Learn how to prepare for and adapt to the future of MLOps
- Effectively use pre-trained models like HuggingFace and OpenAI to complement your MLOps strategy