Practical Lakehouse Architecture: Designing and Implementing Modern Data Platforms at Scale (Paperback)
暫譯: 實用湖倉架構:設計與實現現代數據平台的擴展性
Thalpati, Gaurav Ashok
- 出版商: O'Reilly
- 出版日期: 2024-08-27
- 定價: $2,480
- 售價: 9.5 折 $2,356
- 貴賓價: 9.0 折 $2,232
- 語言: 英文
- 頁數: 283
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098153014
- ISBN-13: 9781098153014
-
相關分類:
Data-visualization
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$454InfluxDB 原理與實戰 -
Kubeflow for Machine Learning: From Lab to Production$1,786$1,692 -
$500事件流實戰 -
資料密集型應用系統設計 (Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems)$980$774 -
Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation (Paperback)$1,960$1,862 -
Cloud Finops: Collaborative, Real-Time Cloud Value Decision Making (Paperback)$2,641$2,502 -
$449跨數據中心機器學習:賦能多雲智能數算融合 -
使用 GitOps 實現 Kubernetes 的持續部署:模式、流程及工具$714$678 -
Elasticsearch 數據搜索與分析實戰$599$569 -
客戶留存數據分析與預測$768$730 -
Apache Spark大數據分析:基於Azure Databricks雲平臺$479$455 -
Kafka 實戰$539$512 -
資料科學 SQL 工作術 – 以 MySQL 為例與情境式 ChatGPT 輔助學習 (SQL for Data Scientists - A Beginner’s Guide for Building Datasets for Analysis)$630$498 -
Learning Github Actions: Automation and Integration of CI/CD with Github (Paperback)$2,185$2,070 -
資料視覺化|使用 Python 與 JavaScript, 2/e (Data Visualization with Python and JavaScript: Scrape, Clean, Explore, and Transform Your Data, 2/e)$880$695 -
Practical Machine Learning on Databricks: Seamlessly transition ML models and MLOps on Databricks (Paperback)$1,750$1,663 -
資料治理技術手冊 (Data Governance: The Definitive Guide)$580$458 -
基於 GPT-3、ChatGPT、GPT-4 等 Transformer 架構的自然語言處理$599$569 -
Apache Iceberg: The Definitive Guide: Data Lakehouse Functionality, Performance, and Scalability on the Data Lake (Paperback)$2,375$2,250 -
數據湖倉$299$284 -
Apache Airflow Best Practices: A practical guide to orchestrating data workflow with Apache Airflow (Paperback)$1,700$1,615 -
Delta Lake: The Definitive Guide: Modern Data Lakehouse Architectures with Data Lakes$2,660$2,520 -
CI/CD Design Patterns: Design and implement CI/CD using proven design patterns (Paperback)$1,650$1,568 -
$469GitHub Copilot 編程指南 -
本地端 Ollama × LangChain × LangGraph × LangSmith 開發手冊:打造 RAG、Agent、SQL 應用$750$593
相關主題
商品描述
This concise yet comprehensive guide explains how to adopt a data lakehouse architecture to implement modern data platforms. It reviews the design considerations, challenges, and best practices for implementing a lakehouse and provides key insights into the ways that using a lakehouse can impact your data platform, from managing structured and unstructured data and supporting BI and AI/ML use cases to enabling more rigorous data governance and security measures.
Practical Lakehouse Architecture shows you how to:
- Understand key lakehouse concepts and features like transaction support, time travel, and schema evolution
- Understand the differences between traditional and lakehouse data architectures
- Differentiate between various file formats and table formats
- Design lakehouse architecture layers for storage, compute, metadata management, and data consumption
- Implement data governance and data security within the platform
- Evaluate technologies and decide on the best technology stack to implement the lakehouse for your use case
- Make critical design decisions and address practical challenges to build a future-ready data platform
- Start your lakehouse implementation journey and migrate data from existing systems to the lakehouse
商品描述(中文翻譯)
這本簡明而全面的指南解釋了如何採用數據湖屋架構來實現現代數據平台。它回顧了設計考量、挑戰和實施湖屋的最佳實踐,並提供了關於使用湖屋如何影響您的數據平台的關鍵見解,從管理結構化和非結構化數據、支持商業智慧(BI)和人工智慧/機器學習(AI/ML)用例,到實現更嚴格的數據治理和安全措施。
《實用湖屋架構》將教您如何:
- 理解湖屋的關鍵概念和特性,如交易支持、時間旅行和模式演變
- 理解傳統數據架構與湖屋數據架構之間的差異
- 區分各種文件格式和表格格式
- 設計湖屋架構層,包括存儲、計算、元數據管理和數據消費
- 在平台內實施數據治理和數據安全
- 評估技術並決定最佳技術堆疊,以實現適合您用例的湖屋
- 做出關鍵設計決策並解決實際挑戰,以建立未來準備好的數據平台
- 開始您的湖屋實施之旅,並將數據從現有系統遷移到湖屋