Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs (Paperback)
暫譯: 生成式人工智慧的提示工程:未來-proof 的輸入以獲得可靠的 AI 輸出 (平裝本)
James Phoenix, Mike Taylor
- 出版商: O'Reilly
- 出版日期: 2024-06-25
- 定價: $2,800
- 售價: 9.5 折 $2,660
- 貴賓價: 9.0 折 $2,520
- 語言: 英文
- 頁數: 422
- 裝訂: Quality Paper - also called trade paper
- ISBN: 109815343X
- ISBN-13: 9781098153434
-
相關分類:
Prompt Engineering
-
相關翻譯:
生成式 AI 提示工程|以前瞻性的設計打造穩定、可信任的 AI 解決方案 (Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs) (繁中版)
立即出貨
買這商品的人也買了...
-
Arduino 官方正版 Genuino 101$1,700$1,700 -
Web Performance in Action: Building Faster Web Pages$1,800$1,710 -
Raspberry Pi 3 Model B+ (UK製)$4,620$4,389 -
晉昇軟體最高殿堂:Jenkins2 持續整合大師之路$600$474 -
$1,320Deep Learning with JavaScript: Neural Networks in Tensorflow.Js -
JavaScript 技術手冊$560$476 -
$1,584Microservices Security in Action -
經理人之道:技術領袖航向成長與改變的參考指南 (The Manager's Path: A Guide for Tech Leaders Navigating Growth and Change)$480$379 -
$2,070Multithreaded JavaScript: Concurrency Beyond the Event Loop -
Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications (Hardcover)$6,370$6,243 -
Computer Vision: Algorithms and Applications 2/e (Hardcover)$3,600$3,420 -
Quantum Mechanics, Volume 3: Fermions, Bosons, Photons, Correlations, and Entanglement (Hardcover)$5,570$5,292 -
Quantum Mechanics, Volume 2: Angular Momentum, Spin, and Approximation Methods (Hardcover)$6,230$6,105 -
Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2/e (Paperback)$2,660$2,520 -
Developing Apps with Gpt-4 and Chatgpt: Build Intelligent Chatbots, Content Generators, and More (Paperback)$2,050$1,948 -
5G/5G-Advanced: The New Generation Wireless Access Technology, 3/e (Paperback)$4,080$3,876 -
Staff 工程師之路|獻給個人貢獻者成長與改變的導航指南 (The Staff Engineer's Path)$580$458 -
Foundations of Computer Vision (Hardcover)$2,260$2,215 -
OpenAI API 基礎必修課 -- 使用 Python (GPT-3.5、GPT-4、GPT-4o、DALL·E、TTS、Whisper模型)$520$411 -
Predictive Analytics for the Modern Enterprise: A Practitioner's Guide to Designing and Implementing Solutions$2,090$1,980 -
資料科學:困難部分 (Data Science: The Hard Parts: Techniques for Excelling at Data Science)$680$537 -
OpenTelemetry 入門指南:建立全面可觀測性架構(iThome鐵人賽系列書)【軟精裝】$750$585 -
深度強化學習$479$455 -
SRE 工作現場直擊!:維運起點 x 實戰經驗 x 職涯規劃面面觀(iThome鐵人賽系列書)$600$468 -
AI 應用程式開發|活用 ChatGPT 與 LLM 技術開發實作, 2/e (Developing Apps with GPT-4 and ChatGPT: Build Intelligent Chatbots, Content Generators, and More, 2/e)$680$537
相關主題
商品描述
Large language models (LLMs) and diffusion models such as ChatGPT and Stable Diffusion have unprecedented potential. Because they have been trained on all the public text and images on the internet, they can make useful contributions to a wide variety of tasks. And with the barrier to entry greatly reduced today, practically any developer can harness LLMs and diffusion models to tackle problems previously unsuitable for automation.
With this book, you'll gain a solid foundation in generative AI, including how to apply these models in practice. When first integrating LLMs and diffusion models into their workflows, most developers struggle to coax reliable enough results from them to use in automated systems. Authors James Phoenix and Mike Taylor show you how a set of principles called prompt engineering can enable you to work effectively with AI.
Learn how to empower AI to work for you. This book explains:
- The structure of the interaction chain of your program's AI model and the fine-grained steps in between
- How AI model requests arise from transforming the application problem into a document completion problem in the model training domain
- The influence of LLM and diffusion model architecture—and how to best interact with it
- How these principles apply in practice in the domains of natural language processing, text and image generation, and code
商品描述(中文翻譯)
大型語言模型(LLMs)和擴散模型,如 ChatGPT 和 Stable Diffusion,具有前所未有的潛力。因為它們已經在互聯網上所有公開的文本和圖像上進行了訓練,所以它們可以對各種任務做出有用的貢獻。隨著入門門檻的顯著降低,幾乎任何開發者都可以利用 LLMs 和擴散模型來解決以前不適合自動化的問題。
在這本書中,您將獲得生成式 AI 的堅實基礎,包括如何在實踐中應用這些模型。當大多數開發者首次將 LLMs 和擴散模型整合到他們的工作流程中時,往往難以從中獲得足夠可靠的結果以用於自動化系統。作者 James Phoenix 和 Mike Taylor 向您展示了一組稱為提示工程(prompt engineering)的原則,這可以使您有效地與 AI 進行合作。
學習如何使 AI 為您工作。本書解釋了:
- 您的程式 AI 模型的互動鏈結構及其之間的細微步驟
- AI 模型請求如何源於將應用問題轉化為模型訓練領域中的文檔完成問題
- LLM 和擴散模型架構的影響,以及如何最佳地與其互動
- 這些原則在自然語言處理、文本和圖像生成以及程式碼領域中的實際應用