Financial Data Engineering: Design and Build Data-Driven Financial Products (Paperback)
暫譯: 金融數據工程:設計與構建數據驅動的金融產品
Khraisha, Tamer
買這商品的人也買了...
-
Arduino 官方正版 Genuino 101$1,700$1,700 -
Raspberry Pi 3 Model B+ (UK製)$4,620$4,389 -
$1,320Deep Learning with JavaScript: Neural Networks in Tensorflow.Js -
產品開發模式轉型:從需求交付到價值交付$414$393 -
$378產品經理方法論 構建完整的產品知識體系 -
$806軟件研發效能提升實踐 -
$311勢道術:產品經理成長之路 -
B端產品方法論:入門、實戰與進階$774$735 -
決勝B端:驅動數字化轉型的產品經理, 2/e$600$570 -
$760隱私保護計算 -
$1,501Software Architecture and Decision-Making: Leveraging Leadership, Technology, and Product Management to Build Great Products (Paperback) -
$510軟件開發珠璣:穿越 50年軟件往事的 60條戒律 -
$602大語言模型:基礎與前沿 -
產品經理方法論 — 構建完整的產品知識體系, 2/e$539$512 -
Duckdb in Action$2,200$2,090 -
Continuous Deployment: Enable Faster Feedback, Safer Releases, and More Reliable Software (Paperback)$2,242$2,124 -
分佈式機器學習模式$419$398 -
算法設計與分析——C++語言描述(第4版)$414$393 -
產品領導人之道|培育卓越產品經理的全方位指南 (Strong Product People: A Complete Guide to Developing Great Product Managers)$680$537 -
Platform Engineering: A Guide for Technical, Product, and People Leaders (Paperback)$1,995$1,890 -
Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)$2,565$2,430 -
無瑕的程式碼 軟體工匠篇:程式設計師必須做到的紀律、標準與倫理 (Clean Craftsmanship: Disciplines, Standards, and Ethics)$720$562 -
$312AI 產品經理手冊 -
$987C++ 編程之禪:從理論到實踐 -
Modern Time Series Forecasting with Python: Industry-ready machine learning and deep learning time series analysis with PyTorch and pandas, 2/e (Paperback)$2,030$1,929
相關主題
商品描述
Today, investment in financial technology and digital transformation is reshaping the financial landscape and generating many opportunities. Too often, however, engineers and professionals in financial institutions lack a practical view of the concepts, problems, techniques, and technologies necessary to build a modern, reliable, and scalable financial data infrastructure. This is where financial data engineering is needed.
A data engineer who specializes in finance not only has specific data engineering knowledge, but also a good understanding of financial domain-specific problems, approaches, data ecosystem, data providers, data formats, technological constraints, identifiers, entities, regulatory requirements, and governance.
This book offers a comprehensive, practical, domain-driven approach to financial data engineering with real use cases, market practices, and hands-on projects.
You'll learn:
- The data engineering landscape in the financial sector
- Specific problems encountered in financial data engineering
- Structure, players, and particularities of the financial data domain
- Approaches to designing financial data identification and entity systems
- Financial data governance frameworks, concepts, and best practices
- The financial data engineering lifecycle from ingestion to production
- The varieties and main characteristics of financial data workflows
- How to build financial data pipelines using open source and cloud technologies
商品描述(中文翻譯)
今天,對金融科技和數位轉型的投資正在重塑金融環境並產生許多機會。然而,金融機構中的工程師和專業人士往往缺乏對建立現代、可靠且可擴展的金融數據基礎設施所需的概念、問題、技術和技術的實際看法。這就是金融數據工程所需的地方。
專注於金融的數據工程師不僅擁有特定的數據工程知識,還對金融領域特有的問題、方法、數據生態系統、數據提供者、數據格式、技術限制、標識符、實體、法規要求和治理有良好的理解。
本書提供了一個全面、實用、以領域為驅動的金融數據工程方法,並包含真實的使用案例、市場實踐和實作專案。
您將學到:
- 金融領域的數據工程概況
- 在金融數據工程中遇到的特定問題
- 金融數據領域的結構、參與者和特點
- 設計金融數據識別和實體系統的方法
- 金融數據治理框架、概念和最佳實踐
- 從數據攝取到生產的金融數據工程生命周期
- 金融數據工作流程的多樣性和主要特徵
- 如何使用開源和雲技術構建金融數據管道