Privacy and Security for Large Language Models: Hands-On Privacy-Preserving Techniques for Personalized AI
暫譯: 大型語言模型的隱私與安全:個性化AI的實作隱私保護技術
Lin, Baihan
- 出版商: O'Reilly
- 出版日期: 2026-02-17
- 售價: $2,870
- 貴賓價: 9.5 折 $2,727
- 語言: 英文
- 頁數: 315
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098160843
- ISBN-13: 9781098160845
-
相關分類:
Large language model
海外代購書籍(需單獨結帳)
相關主題
商品描述
As the deployment of AI technologies surges, the need to safeguard privacy and security in the use of large language models (LLMs) is more crucial than ever. Professionals face the challenge of leveraging the immense power of LLMs for personalized applications while ensuring stringent data privacy and security. The stakes are high, as privacy breaches and data leaks can lead to significant reputational and financial repercussions.
This book serves as a much-needed guide to addressing these pressing concerns. Dr. Baihan Lin offers a comprehensive exploration of privacy-preserving and security techniques like differential privacy, federated learning, and homomorphic encryption, applied specifically to LLMs. With its hands-on code examples, real-world case studies, and robust fine-tuning methodologies in domain-specific applications, this book is a vital resource for developing secure, ethical, and personalized AI solutions in today's privacy-conscious landscape.
By reading this book, you'll:
- Discover privacy-preserving techniques for LLMs
- Learn secure fine-tuning methodologies for personalizing LLMs
- Understand secure deployment strategies and protection against attacks
- Explore ethical considerations like bias and transparency
- Gain insights from real-world case studies across healthcare, finance, and more
- Examine the legal and cultural landscape of AI deployment
商品描述(中文翻譯)
隨著人工智慧技術的快速發展,保護大型語言模型(LLMs)使用中的隱私和安全性變得比以往任何時候都更加重要。專業人士面臨著利用LLMs強大功能來實現個性化應用的挑戰,同時確保嚴格的數據隱私和安全性。風險很高,因為隱私洩露和數據泄漏可能導致重大的聲譽和財務後果。
本書是針對這些緊迫問題的急需指南。林百瀚博士提供了對隱私保護和安全技術的全面探討,如差分隱私(differential privacy)、聯邦學習(federated learning)和同態加密(homomorphic encryption),這些技術專門應用於LLMs。透過實用的程式碼範例、真實案例研究以及針對特定領域應用的強大微調方法,本書是開發安全、道德和個性化人工智慧解決方案的重要資源,特別是在當今重視隱私的環境中。
閱讀本書後,您將能夠:
- 探索LLMs的隱私保護技術
- 學習個性化LLMs的安全微調方法
- 理解安全部署策略及防範攻擊的措施
- 探討偏見和透明度等道德考量
- 獲取來自醫療、金融等領域的真實案例研究見解
- 檢視人工智慧部署的法律和文化環境