Building Machine Learning Systems with a Feature Store: Batch, Real-Time, and LLM Systems
暫譯: 使用特徵庫構建機器學習系統:批次、即時與大型語言模型系統
Dowling, Jim
- 出版商: O'Reilly
- 出版日期: 2025-12-16
- 售價: $2,840
- 貴賓價: 9.5 折 $2,698
- 語言: 英文
- 頁數: 506
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098165233
- ISBN-13: 9781098165239
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Get up to speed on a new unified approach to building machine learning (ML) systems with batch data, real-time data, and large language models (LLMs) based on independent, modular ML pipelines and a shared data layer. With this practical book, data scientists and ML engineers will learn in detail how to develop, maintain, and operate modular ML systems.
Author Jim Dowling introduces fundamental MLOps principles and practices for developing and operating reliable ML systems and describes the key data platform that you'll use to build and operate your ML systems: the feature store. Through examples, you'll look at how the feature store helps solve the hardest problem in ML--the data. When building systems, you'll move seamlessly from managing incremental datasets for training and fine-tuning to real-time data access and retrieval-augmented generation for online ML systems.
With this book, you'll be able to:
- Make the leap from training ML models to building ML systems
- Develop an ML system as modular feature, training, and inference pipelines
- Design, develop, and operate batch ML systems, real-time ML systems, and fine-tuned LLM systems with retrieval-augmented generation
- Learn the problems a feature store for ML solves when building ML systems
- Understand the principles of MLOps for developing and safely updating ML systems
Jim Dowling is CEO of Hopsworks and an associate professor at KTH Royal Institute of Technology in Stockholm, Sweden.
商品描述(中文翻譯)
掌握一種新的統一方法,使用批次數據、即時數據和大型語言模型(LLMs)來構建機器學習(ML)系統,這些系統基於獨立的模組化 ML 管道和共享數據層。這本實用的書籍將使數據科學家和 ML 工程師詳細了解如何開發、維護和操作模組化的 ML 系統。
作者 Jim Dowling 介紹了開發和運營可靠 ML 系統的基本 MLOps 原則和實踐,並描述了您將用來構建和運營 ML 系統的關鍵數據平台:特徵庫(feature store)。通過範例,您將了解特徵庫如何幫助解決 ML 中最棘手的問題——數據。在構建系統時,您將無縫地從管理增量數據集以進行訓練和微調,轉向即時數據訪問和檢索增強生成(retrieval-augmented generation)以支持線上 ML 系統。
通過這本書,您將能夠:
- 從訓練 ML 模型躍升到構建 ML 系統
- 將 ML 系統開發為模組化的特徵、訓練和推斷管道
- 設計、開發和運營批次 ML 系統、即時 ML 系統以及帶有檢索增強生成的微調 LLM 系統
- 了解特徵庫在構建 ML 系統時解決的問題
- 理解 MLOps 的原則,以安全地開發和更新 ML 系統
Jim Dowling 是 Hopsworks 的首席執行官,並且是瑞典斯德哥爾摩 KTH 皇家科技學院的副教授。