Think STATS: Exploratory Data Analysis
暫譯: 思考統計:探索性資料分析

Downey, Allen B.

  • 出版商: O'Reilly
  • 出版日期: 2025-05-13
  • 售價: $2,780
  • 貴賓價: 9.5$2,641
  • 語言: 英文
  • 頁數: 321
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098190254
  • ISBN-13: 9781098190255
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

商品描述

If you know how to program, you have the skills to turn data into knowledge, using the tools of probability and statistics. This thoroughly revised edition shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. Through practical examples and exercises that follow a collection of real-world datasets, you'll learn the entire process of exploratory data analysis--from collecting data and generating statistics to identifying patterns and testing hypotheses.

Whether you're a data scientist, software engineer, or data enthusiast, you'll get up to speed on commonly used tools including NumPy, SciPy, and Pandas as you explore distributions, relationships between variables, visualization, and many other concepts. And this updated guide has been fully moved into Jupyter notebooks, so you can read the text, run the code, and work on exercises all in one place.

  • Analyze data distributions and visualize patterns using Python libraries
  • Improve predictions and insights with regression models
  • Dive into specialized topics like time series analysis and survival analysis
  • Integrate statistical techniques and tools for validation, inference, and more
  • Communicate findings effectively with enhanced data visualization practices
  • Troubleshoot common data analysis challenges
  • Boost reproducibility and collaboration in data analysis projects with interactive notebooks

商品描述(中文翻譯)

如果您知道如何編程,您就具備將數據轉化為知識的技能,使用概率和統計的工具。本書經過全面修訂的版本將向您展示如何以計算方式而非數學方式進行統計分析,使用 Python 編寫的程式。通過實際範例和練習,這些範例基於一系列真實世界的數據集,您將學習探索性數據分析的整個過程——從收集數據和生成統計數據到識別模式和測試假設。

無論您是數據科學家、軟體工程師還是數據愛好者,您都將熟悉常用工具,包括 NumPy、SciPy 和 Pandas,並探索分佈、變數之間的關係、可視化以及許多其他概念。而這本更新的指南已完全轉移到 Jupyter notebooks 中,因此您可以在一個地方閱讀文本、運行代碼並進行練習。

- 使用 Python 庫分析數據分佈並可視化模式
- 通過回歸模型改善預測和洞察
- 深入專門主題,如時間序列分析和生存分析
- 整合統計技術和工具以進行驗證、推斷等
- 以增強的數據可視化實踐有效地傳達發現
- 解決常見的數據分析挑戰
- 通過互動式筆記本提升數據分析項目的可重現性和協作性

最後瀏覽商品 (20)