Probabilistic Numerics: Computation as Machine Learning
暫譯: 機率數值計算:將計算視為機器學習
Hennig, Philipp, Osborne, Michael A., Kersting, Hans P.
- 出版商: Cambridge
- 出版日期: 2022-10-13
- 售價: $2,780
- 貴賓價: 9.5 折 $2,641
- 語言: 英文
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1107163447
- ISBN-13: 9781107163447
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Probabilistic numerical computation formalises the connection between machine learning and applied mathematics. Numerical algorithms approximate intractable quantities from computable ones. They estimate integrals from evaluations of the integrand, or the path of a dynamical system described by differential equations from evaluations of the vector field. In other words, they infer a latent quantity from data. This book shows that it is thus formally possible to think of computational routines as learning machines, and to use the notion of Bayesian inference to build more flexible, efficient, or customised algorithms for computation. The text caters for Masters' and PhD students, as well as postgraduate researchers in artificial intelligence, computer science, statistics, and applied mathematics. Extensive background material is provided along with a wealth of figures, worked examples, and exercises (with solutions) to develop intuition.
商品描述(中文翻譯)
概率數值計算形式化了機器學習與應用數學之間的聯繫。數值算法從可計算的量中近似不可處理的量。它們通過對被積分函數的評估來估計積分,或通過對向量場的評估來描述由微分方程所描述的動態系統的路徑。換句話說,它們從數據中推斷潛在的量。本書顯示,從形式上來看,可以將計算例程視為學習機器,並利用貝葉斯推斷的概念來構建更靈活、高效或定制的計算算法。該文本適合碩士和博士生,以及人工智慧、計算機科學、統計學和應用數學的研究生。書中提供了大量的背景材料,並附有豐富的圖示、範例和練習(附解答),以幫助讀者發展直覺。