Density Ratio Estimation in Machine Learning
暫譯: 機器學習中的密度比率估計
Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori
- 出版商: Cambridge
- 出版日期: 2018-03-29
- 售價: $2,170
- 貴賓價: 9.5 折 $2,062
- 語言: 英文
- 頁數: 341
- 裝訂: Paperback
- ISBN: 1108461735
- ISBN-13: 9781108461733
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
Artificial Intelligence: A Modern Approach, 3/e (IE-Paperback)$1,300$1,274 -
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation (Hardcover)$2,070$1,967 -
Learning From Data (Hardcover)$1,200$1,176 -
Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281 -
Understanding Machine Learning: From Theory to Algorithms (Hardcover)$2,600$2,470 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels$1,750$1,663 -
Flask 網頁開發, 2/e (Flask Web Development : Developing Web Applications with Python, 2/e)$580$458 -
Mac 活用萬事通:Mojave 一本就學會!$520$406 -
Python 技術者們 - 實踐! 帶你一步一腳印由初學到精通$650$553 -
Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions$1,610$1,530 -
設計師都該懂的包容性網頁 UI/UX 設計模式:知名設計師教你親和性網頁的實作祕密$450$351 -
JavaScript 技術手冊$560$476 -
Introduction to Nonparametric Estimation$5,110$4,855 -
GAN 對抗式生成網路 (GANs in Action: Deep learning with Generative Adversarial Networks)$750$593 -
PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425 -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Probability for Statisticians$6,630$6,299 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468
商品描述
Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning.
商品描述(中文翻譯)
機器學習是一個跨學科的科學與工程領域,研究學習系統的數學理論和實際應用。本書介紹了密度比估計的理論、方法和應用,這是一個在機器學習社群中新興的範式。各種機器學習問題,如非穩態適應、異常檢測、降維、獨立成分分析、聚類、分類和條件密度估計,都可以通過概率密度比的估計系統性地解決。作者提供了各種密度比估計器的全面介紹,包括通過密度估計、矩匹配、概率分類、密度擬合和密度比擬合的方法,並描述了這些方法如何應用於機器學習。本書還提供了密度比估計的數學理論,包括參數和非參數的收斂分析以及數值穩定性分析,完整地呈現了機器學習中密度比估計的整體框架的首次和權威的處理。
