Computer Age Statistical Inference : Algorithms, Evidence, and Data Science (Student Edition)(Paperback)
暫譯: 電腦時代的統計推斷:演算法、證據與資料科學(學生版)(平裝本)
- 出版商: Cambridge
- 出版日期: 2021-06-17
- 售價: $1,680
- 貴賓價: 9.5 折 $1,596
- 語言: 英文
- 頁數: 510
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1108823416
- ISBN-13: 9781108823418
-
相關分類:
Data-mining
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Prediction, Learning, and Games (Hardcover)$3,660$3,477 -
機率論 (修訂版)(Ross: A First Course in Probability, 8/e)$780$741 -
Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281 -
The Probabilistic Method (Hardcover)$5,310$5,045 -
Computer Age Statistical Inference : Algorithms, Evidence, and Data Science (Hardocver)$2,980$2,831 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
Introduction to the Theory of Computation, 3/e (Hardcover)$1,490$1,460 -
設計師都該懂的包容性網頁 UI/UX 設計模式:知名設計師教你親和性網頁的實作祕密$450$351 -
PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425 -
Introduction to Complex Variables and Applications (Paperback)$1,480$1,450 -
Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications (Hardcover)$6,370$6,243 -
$2,565The Algorithm Design Manual, 3/e (德國原版) -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
$458PyTorch 深度學習簡明實戰 -
$848圖神經網絡:基礎、前沿與應用 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
$454深度強化學習理論與實踐 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
A Pen and Paper Introduction to Statistics (Paperback)$2,070$1,967 -
R-Ticulate: A Beginner's Guide to Data Analysis for Natural Scientists (Hardcover)$4,380$4,161
商品描述
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
商品描述(中文翻譯)
二十一世紀見證了統計方法的驚人擴展,無論是在範疇還是影響力上。「數據科學」和「機器學習」已成為新聞中熟悉的術語,統計方法被應用於現代科學和商業的龐大數據集。我們是如何走到這裡的?我們將往哪裡去?這一切又是如何相互關聯的?現在以平裝本形式出版,並增強了練習題,本書提供了一個集中於現代統計思維的課程。從經典的推論理論開始——貝葉斯(Bayesian)、頻率主義(frequentist)、費雪(Fisherian)——各章節探討一系列有影響力的主題:生存分析、邏輯回歸、經驗貝葉斯(empirical Bayes)、切割法(jackknife)和自助法(bootstrap)、隨機森林(random forests)、神經網絡(neural networks)、馬爾可夫鏈蒙特卡羅(Markov Chain Monte Carlo)、模型選擇後的推論,以及更多主題。本書的現代方法將方法論和算法與統計推論相結合。每章結尾都有經過課堂測試的練習題,書末則對統計學和數據科學的未來方向進行了推測。