Homological Theory of Representations
暫譯: 表示的同調理論
Krause, Henning
- 出版商: Cambridge
- 出版日期: 2021-11-18
- 售價: $3,300
- 貴賓價: 9.5 折 $3,135
- 語言: 英文
- 頁數: 375
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1108838898
- ISBN-13: 9781108838894
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
商品描述
Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.
商品描述(中文翻譯)
現代的表示理論發展在很大程度上依賴於同調方法。本書針對高級研究生和研究人員,從基礎開始介紹這些方法,並討論幾個標誌性結果,以展示其力量和美感。範疇基礎包括阿貝爾類別(abelian categories)和導出類別(derived categories),重點在於局部化(localisation)、光譜(spectra)和純度(purity)。表示理論的重點是阿丁代數(Artin algebras)的模類別(module categories),並討論有限群(finite groups)和有限箭圖(finite quivers)的表示理論。此外,還涵蓋了戈倫斯坦代數(Gorenstein algebras)和準遺傳代數(quasi-hereditary algebras),包括施爾代數(Schur algebras),這些代數模型化一般線性群的多項式表示,並通過傾斜對象(tilting objects)介紹導出類別的莫里塔理論(Morita theory)。最後一部分專門系統性地介紹了局部有限呈現類別的純度理論,涵蓋純注入(pure-injectives)、可定義子類別(definable subcategories)和齊格勒光譜(Ziegler spectra)。本書對現代表示理論中重要主題的清晰、詳細的闡述,許多主題在此之前尚未有一本書涵蓋,值得每位表示理論學者的圖書館收藏。