Machine Learning: Hands-On for Developers and Technical Professionals
暫譯: 機器學習:開發者與技術專業人士的實作指南
Jason Bell
- 出版商: Wiley
- 出版日期: 2014-11-03
- 售價: $1,650
- 貴賓價: 9.5 折 $1,568
- 語言: 英文
- 頁數: 408
- 裝訂: Paperback
- ISBN: 1118889061
- ISBN-13: 9781118889060
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習:實用技術指南 (簡中版)
立即出貨
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
SQL 語法範例辭典$550$468 -
Pattern Recognition and Machine Learning (Hardcover)$4,220$4,009 -
深入淺出物件導向分析與設計 (Head First Object-Oriented Analysis and Design)$880$695 -
大話設計模式$620$490 -
Speech and Language Processing, 2/e (IE-Paperback)$1,360$1,333 -
Machine Learning: The Art and Science of Algorithms that Make Sense of Data (Paperback)$1,850$1,758 -
Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
ASP.NET MVC 5 網站開發美學$780$616 -
啊哈!圖解演算法必學基礎$350$298 -
Swift初學特訓班--iOS App 開發快速養成與實戰(附近3小時新手入門與關鍵影音教學/全書範例程式)$420$332 -
Raspberry Pi 超炫專案與完全實戰 (深入 Raspberry Pi 的全面開發經典) (附101段教學與執行影片/範例程式)$520$411 -
Android 程式設計入門、應用到精通--增訂第三版 (適用 5.X~1.X, Android Wear 穿戴式裝置)$560$442 -
Docker 入門與實戰$450$356 -
$474資料探勘:實用機器學習工具與技術, 3/e (Data Mining: Practical Machine Learning Tools and Techniques, 3/e) -
Android App 程式設計教本之無痛起步 -- 使用 Android Studio 開發環境$550$468 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
演算法的樂趣|23個程式設計必學主題與應用實例$480$408 -
Discovery kit with STM32L476VG$900$900 -
Evaluating Learning Algorithms: A Classification Perspective$2,275$2,161 -
打動人心的產品設計|頂尖設計師打造成功產品的黃金法則 (Designing Products People Love: How Great Designers Create Successful Products)$580$458 -
Python 專家實踐指南|搭乘專業開發者的學習便車 (The Hitchhiker's Guide to Python: Best Practices for Development)$580$458
相關主題
商品描述
Dig deep into the data with a hands-on guide to machine learning Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
商品描述(中文翻譯)
深入數據的實用機器學習指南《機器學習:開發者與技術專業人員的實作指南》提供了針對開發者和技術專業人員最常用的機器學習技術的實作教學和完整的程式碼範例。本書詳細介紹了每種機器學習變體,解釋其運作方式及在特定行業中的應用,讓讀者在學習過程中能將所呈現的技術融入自己的工作中。機器學習的一個核心理念是強調數據準備,對各種學習算法的全面探索展示了適當的工具如何幫助任何開發者從現有數據中提取信息和洞察。本書還包含完整的教學材料,以便在課堂上使用,使這本資源對學生和專業參考都非常有用。機器學習本質上是一種基於數學和算法的技術,形成了歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要具備機器學習的工作知識,該知識基於從訓練數據中學習到的已知屬性來形成預測。《機器學習》是一本適合非數學專業人士的易讀且全面的指南,提供清晰的指導,讓讀者能夠:
- 學習機器學習的語言,包括 Hadoop、Mahout 和 Weka
- 理解決策樹、貝葉斯網絡和人工神經網絡
- 實作關聯規則、即時學習和批次學習
- 制定安全、有效和高效的機器學習策略
通過學習構建能夠從數據中學習的系統,讀者可以提高在各行業中的實用性。機器學習位於深入數據分析和可視化的核心,隨著公司發現其現有數據中隱藏的金礦,這一需求日益增加。對於參與數據科學的技術專業人士來說,《機器學習:開發者與技術專業人員的實作指南》提供了深入挖掘所需的技能和技術。
