Machine Learning and Big Data with KDB+/Q (Hardcover)
暫譯: KDB+/Q 的機器學習與大數據 (精裝版)
Jan Novotny, Paul A. Bilokon, Aris Galiotos, Frederic Deleze
- 出版商: Wiley
- 出版日期: 2019-12-31
- 售價: $2,500
- 貴賓價: 9.5 折 $2,375
- 語言: 英文
- 頁數: 640
- ISBN: 1119404754
- ISBN-13: 9781119404750
-
相關分類:
大數據 Big-data
立即出貨 (庫存=1)
買這商品的人也買了...
-
Parallel Optimization: Theory, Algorithms, and Applications (Hardcover)$1,560$1,529 -
編譯系統設計 (Compilers: Principles, Techniques, and Tools, 2/e)$960$864 -
透視 C語言指標-深度探索記憶體管理核心技術 (Understanding and Using C Pointers)$480$379 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
$556Scala 程式設計, 2/e (Programming Scala: Scalability = Functional Programming + Objects, 2/e) -
$403解析深度學習 : 語音識別實踐 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
鳥哥的 Linux 基礎學習訓練教材$480$408 -
Python 新手使用 Django 架站技術實作:活用 Django 2.0 Web Framework 建構動態網站的 16堂課$690$538 -
$607強化學習 -
Julia 程式設計:新世代資料科學與數值運算語言$480$432 -
Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis$3,350$3,183 -
Docker 專業養成 ─ 活用基礎與實踐技能 (暢銷回饋版)$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
Python 設計模式$650$514 -
Excel VBA 經典程式碼:一行抵萬行「偷懶程式碼」應用大全 (下)$620$484 -
增壓的 Python|讓程式碼進化到全新境界 (Supercharged Python: Take Your Code to the Next Level)$680$578 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
Python 功力提升的樂趣|寫出乾淨程式碼的最佳實務 (Beyond the Basic Stuff with Python)$500$375 -
Deep Learning 3|用 Python 進行深度學習框架的開發實作$780$616 -
Python 刷題鍛鍊班:老手都刷過的 50 道程式題, 求職面試最給力 (Python Workout: 50 ten-minute exercises)$480$379 -
CPython Internals: Your Guide to the Python 3 Interpreter (Paperback)$1,580$1,501 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
$774Django 5 Web 應用開發實戰 -
FastAPI|現代 Python 網站開發 (FastAPI : Modern Python Web Development)$680$537
相關主題
商品描述
Upgrade your programming language to more effectively handle high-frequency data
Machine Learning and Big Data with KDB+/Q offers quants, programmers and algorithmic traders a practical entry into the powerful but non-intuitive kdb+ database and q programming language. Ideally designed to handle the speed and volume of high-frequency financial data at sell- and buy-side institutions, these tools have become the de facto standard; this book provides the foundational knowledge practitioners need to work effectively with this rapidly-evolving approach to analytical trading.
The discussion follows the natural progression of working strategy development to allow hands-on learning in a familiar sphere, illustrating the contrast of efficiency and capability between the q language and other programming approaches. Rather than an all-encompassing “bible”-type reference, this book is designed with a focus on real-world practicality to help you quickly get up to speed and become productive with the language.
- Understand why kdb+/q is the ideal solution for high-frequency data
- Delve into “meat” of q programming to solve practical economic problems
- Perform everyday operations including basic regressions, cointegration, volatility estimation, modelling and more
- Learn advanced techniques from market impact and microstructure analyses to machine learning techniques including neural networks
The kdb+ database and its underlying programming language q offer unprecedented speed and capability. As trading algorithms and financial models grow ever more complex against the markets they seek to predict, they encompass an ever-larger swath of data – more variables, more metrics, more responsiveness and altogether more “moving parts.”
Traditional programming languages are increasingly failing to accommodate the growing speed and volume of data, and lack the necessary flexibility that cutting-edge financial modelling demands. Machine Learning and Big Data with KDB+/Q opens up the technology and flattens the learning curve to help you quickly adopt a more effective set of tools.
商品描述(中文翻譯)
升級您的程式語言以更有效地處理高頻數據
使用 KDB+/Q 的機器學習與大數據 為量化分析師、程式設計師和算法交易者提供了一個實用的入門指南,進入強大但不直觀的 kdb+ 數據庫和 q 程式語言。這些工具理想地設計用來處理賣方和買方機構的高頻金融數據的速度和容量,已成為事實上的標準;本書提供了從業者有效使用這種快速發展的分析交易方法所需的基礎知識。
討論遵循策略開發的自然進程,允許在熟悉的領域中進行實踐學習,展示 q 語言與其他程式設計方法之間的效率和能力對比。本書並非一部包羅萬象的“聖經”式參考書,而是專注於現實世界的實用性,幫助您快速上手並提高使用該語言的生產力。
- 了解為什麼 kdb+/q 是高頻數據的理想解決方案
- 深入探討 q 程式設計的“核心”,以解決實際經濟問題
- 執行日常操作,包括基本回歸、協整、波動性估計、建模等
- 學習從市場影響和微觀結構分析到機器學習技術(包括神經網絡)的高級技術
kdb+ 數據庫及其底層程式語言 q 提供了前所未有的速度和能力。隨著交易算法和金融模型在試圖預測的市場中變得越來越複雜,它們涵蓋了越來越多的數據——更多的變數、更多的指標、更多的反應性,以及更多的“運動部件”。
傳統程式語言越來越無法滿足不斷增長的數據速度和容量,並缺乏尖端金融建模所需的靈活性。使用 KDB+/Q 的機器學習與大數據 開啟了這項技術,並平坦了學習曲線,幫助您快速採用更有效的工具組。
