R Programming for Mass Spectrometry: Effective and Reproducible Data Analysis
暫譯: R 語言在質譜學中的應用:有效且可重複的數據分析
Julian, Randall K.
- 出版商: Wiley
- 出版日期: 2025-05-28
- 售價: $4,540
- 貴賓價: 9.5 折 $4,313
- 語言: 英文
- 頁數: 336
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119872359
- ISBN-13: 9781119872351
-
相關分類:
R 語言、Data Science
尚未上市,無法訂購
相關主題
商品描述
A practical guide to reproducible and high impact mass spectrometry data analysis
R Programming for Mass Spectrometry teaches a rigorous and detailed approach to analyzing mass spectrometry data using the R programming language. It emphasizes reproducible research practices and transparent data workflows and is designed for analytical chemists, biostatisticians, and data scientists working with mass spectrometry.
Readers will find specific algorithms and reproducible examples that address common challenges in mass spectrometry alongside example code and outputs. Each chapter provides practical guidance on statistical summaries, spectral search, chromatographic data processing, and machine learning for mass spectrometry.
Key topics include:
- Comprehensive data analysis using the Tidyverse in combination with Bioconductor, a widely used software project for the analysis of biological data
- Processing chromatographic peaks, peak detection, and quality control in mass spectrometry data
- Applying machine learning techniques, using Tidymodels for supervised and unsupervised learning, as well as for feature engineering and selection, providing modern approaches to data-driven insights
- Methods for producing reproducible, publication-ready reports and web pages using RMarkdown
R Programming for Mass Spectrometry is an indispensable guide for researchers, instructors, and students. It provides modern tools and methodologies for comprehensive data analysis. With a companion website that includes code and example datasets, it serves as both a practical guide and a valuable resource for promoting reproducible research in mass spectrometry.
商品描述(中文翻譯)
可重現且高影響力的質譜數據分析實用指南
質譜的 R 語言程式設計 教授使用 R 程式語言分析質譜數據的嚴謹且詳細的方法。它強調可重現的研究實踐和透明的數據工作流程,旨在為從事質譜工作的分析化學家、生物統計學家和數據科學家提供指導。
讀者將會找到針對質譜中常見挑戰的具體演算法和可重現的範例,並附有範例代碼和輸出。每一章都提供有關統計摘要、光譜搜尋、色譜數據處理和質譜機器學習的實用指導。
主要主題包括:
- 使用 Tidyverse 結合 Bioconductor 進行全面的數據分析,Bioconductor 是一個廣泛使用的生物數據分析軟體專案
- 處理色譜峰、峰值檢測和質譜數據的質量控制
- 應用機器學習技術,使用 Tidymodels 進行監督式和非監督式學習,以及特徵工程和選擇,提供數據驅動洞察的現代方法
- 使用 RMarkdown 生成可重現的、適合發表的報告和網頁的方法
質譜的 R 語言程式設計 是研究人員、講師和學生不可或缺的指南。它提供了全面數據分析的現代工具和方法論。伴隨著包含代碼和範例數據集的網站,它既是實用指南,也是促進質譜可重現研究的寶貴資源。
作者簡介
Randall K. Julian, Jr., PhD, is the founder and CEO of Indigo BioAutomation, where his team uses cloud computing, signal processing, and advanced algorithms to automatically analyze millions of mass spectrometry samples for diagnostic and hospital labs. Indigo's technology powers advanced diagnostic instruments worldwide. Dr. Julian also leads Indigo's AI/ML research team and is an Adjunct Professor of Chemistry at Purdue University. He co-developed several short courses on using R for mass spectrometry, which he teaches at international scientific conferences.
作者簡介(中文翻譯)
Randall K. Julian, Jr., PhD,是Indigo BioAutomation的創辦人兼執行長,他的團隊利用雲端運算、信號處理和先進演算法,自動分析數百萬個質譜樣本,供診斷和醫院實驗室使用。Indigo的技術為全球先進的診斷儀器提供動力。Julian博士還領導Indigo的AI/ML研究團隊,並擔任普渡大學的化學兼任教授。他共同開發了幾個使用R語言進行質譜分析的短期課程,並在國際科學會議上教授這些課程。