Introduction to Probability, 2/e (Hardcover)
暫譯: 機率導論,第二版 (精裝本)
Blitzstein, Joseph K., Hwang, Jessica
- 出版商: CRC
- 出版日期: 2019-02-08
- 售價: $1,750
- 貴賓價: 9.8 折 $1,715
- 語言: 英文
- 頁數: 634
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1138369918
- ISBN-13: 9781138369917
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
Concrete Mathematics: A Foundation for Computer Science, 2/e (Hardcover)$3,160$3,002 -
Categorical Data Analysis, 3/e (Hardcover)$3,150$3,087 -
Complex Analysis: A First Course with Applications (Hardcover)$1,420$1,392 -
Causal Inference in Statistics: A Primer (Paperback)$1,850$1,758 -
為你自己學 Git$500$425 -
Elements of Causal Inference: Foundations and Learning Algorithms (Hardcover)$1,840$1,748 -
Spatial Data Analysis in Ecology and Agriculture Using R$3,590$3,411 -
High-Dimensional Probability: An Introduction with Applications in Data Science (Hardcover)$1,650$1,617 -
High-Dimensional Statistics: A Non-Asymptotic Viewpoint (Hardcover)$1,680$1,646 -
Linear Algebra and Learning from Data (Hardcover)$1,880$1,842 -
Advanced R Statistical Programming and Data Models: Analysis, Machine Learning, and Visualization$2,660$2,520 -
Deep learning 深度學習必讀 - Keras 大神帶你用 Python 實作 (Deep Learning with Python)$1,000$790 -
Mathematical Statistics and Data Analysis, 3/e (IE-Paperback)(with CD Data Sets)$1,360$1,333 -
NumPy 高速運算徹底解說 - 六行寫一隻程式?你真懂深度學習?手工算給你看!$750$638 -
Mostly Harmless Econometrics: An Empiricist's Companion (Paperback)$2,140$2,033 -
Mathematics for Machine Learning (Paperback)$1,520$1,490 -
程序員的數學 第2版$354$336 -
深度學習的數學地圖 -- 用 Python 實作神經網路的數學模型 (附數學快查學習地圖)$580$458 -
$908Python 數學實驗與建模 -
Combinatorial Mathematics (Hardcover)$1,680$1,646 -
Introductory Econometrics: A Modern Approach, 7/e (AE-Paperback)$1,620$1,539 -
公職考試講重點【電子學(含電子學概要)】$700$665 -
$254高等數學(上冊)(慕課版) -
30分鐘就讀懂:機器學習從數學開始$590$466 -
Fundamentals of Causal Inference: With R (Hardcover)$2,800$2,660
商品描述
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory.
The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces.
The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
The second edition adds many new examples, exercises, and explanations, to deepen understanding of the ideas, clarify subtle concepts, and respond to feedback from many students and readers. New supplementary online resources have been developed, including animations and interactive visualizations, and the book has been updated to dovetail with these resources.
Supplementary material is available on Joseph Blitzstein's website www. stat110.net. The supplements include:
Solutions to selected exercises
Additional practice problems
Handouts including review material and sample exams Animations and interactive visualizations created in connection with the edX online version of Stat 110.
Links to lecture videos available on ITunes U and YouTube There is also a complete instructor's solutions manual available to instructors who require the book for a course.
商品描述(中文翻譯)
從著名的哈佛統計學講座發展而來的《機率導論》提供了理解統計學、隨機性和不確定性的基本語言和工具。這本書探討了各種應用和範例,從巧合和悖論到 Google PageRank 和馬可夫鏈蒙地卡羅(Markov chain Monte Carlo, MCMC)。其他探討的應用領域包括遺傳學、醫學、計算機科學和信息理論。
作者以易於理解的風格呈現材料,並使用現實世界的例子來激發概念。在整本書中,他們利用故事揭示統計學中基本分佈之間的聯繫,並通過條件化將複雜問題簡化為可管理的部分。
本書包含許多直觀的解釋、圖表和練習題。每章結尾都有一個部分,展示如何在 R 這個免費的統計軟體環境中執行相關的模擬和計算。
第二版增加了許多新的範例、練習和解釋,以加深對概念的理解,澄清微妙的概念,並回應許多學生和讀者的反饋。新的補充在線資源已經開發,包括動畫和互動視覺化,並且本書已更新以與這些資源相結合。
補充材料可在 Joseph Blitzstein 的網站 www.stat110.net 獲得。補充內容包括:
選定練習題的解答
額外的練習題
包括複習材料和樣本考試的講義
與 edX 在線版本 Stat 110 相關的動畫和互動視覺化
可在 ITunes U 和 YouTube 上獲得的講座視頻鏈接
此外,還有完整的教師解答手冊,供需要本書作為課程教材的教師使用。
作者簡介
Joseph K. Blitzstein, PhD, professor of the practice in statistics, Department of Statistics, Harvard University, Cambridge, Massachusetts, USA
Jessica Hwang is a graduate student in the Stanford statistics department.
作者簡介(中文翻譯)
約瑟夫·K·布利茲斯坦(Joseph K. Blitzstein),博士,哈佛大學統計系實務教授,位於美國麻薩諸塞州劍橋市。
黃潔西卡(Jessica Hwang)是史丹佛大學統計系的研究生。