Improved Feature Extraction, Feature Selection, and Identification Techniques That Create a Fast Unsupervised Hyperspectral Target Detection Algorithm
Johnson, Robert J.
- 出版商: Biblioscholar
- 出版日期: 2012-10-17
- 售價: $2,240
- 貴賓價: 9.5 折 $2,128
- 語言: 英文
- 頁數: 248
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1249831938
- ISBN-13: 9781249831938
-
相關分類:
影像辨識 Image-recognition
海外代購書籍(需單獨結帳)
商品描述
This research extends the emerging field of hyperspectral image (HSI) target detectors that assume a global linear mixture model (LMM) of HSI and employ independent component analysis (ICA) to unmix HSI images. Via new techniques to fully automate feature extraction, feature selection, and target pixel identification, an autonomous global anomaly detector, AutoGAD, has been developed for potential employment in an operational environment for real-time processing of HSI targets. For dimensionality reduction (initial feature extraction prior to ICA), a geometric solution that effectively approximates the number of distinct spectral signals is presented.