Structural Analysis, 10/e (SI Units)(IE-Paperback)

Russell C. Hibbeler

下單後立即進貨 (約5~7天)


For courses in Structural Analysis; also suitable for individuals planning a career as a structural engineer.

Applying theory to structural modeling and analysis

Structural Analysis, 10e in SI Units, presents the theory and applications of structural analysis as it applies to trusses, beams, and frames. Through its student-friendly, clear organization, the text emphasizes developing the ability to model and analyze a structure in preparation for professional practice.

The text is designed to ensure students taking their first course in this subject understand some of the more important classical methods of structural analysis, in order to obtain a better understanding of how loads are transmitted through a structure, and how the structure will deform under load. The large number of problems covers realistic situations involving various levels of difficulty. 

The updated 10th SI edition features many new problems and an expanded discussion of structural modeling, specifically the importance of modeling a structure so it can be used in computer analysis. Newly added material includes a discussion of catenary cables and further clarification for drawing moment and deflection diagrams for beams and frames.

Mastering Engineering is not included. Students, if Mastering Engineering is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN. Mastering Engineering should only be purchased when required by an instructor. Instructors, contact your Pearson representative for more information.


Reach every student by pairing this text with Mastering Engineering

Mastering is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, Mastering personalizes the learning experience and improves results for each student.


1 Types of Structures and Loads

1.1 Introduction

1.2 Classification of Structures

1.3 Loads

1.4 Structural Design Problems

Chapter Review


2 Analysis of Statically Determinate Structures

2.1 Idealized Structure

2.2 Load Path

2.3 Principle of Superposition

2.4 Equations of Equilibrium

2.5 Determinacy and Stability

2.6 Application of the Equations of Equilibrium

Fundamental Problems


Project Problem

Chapter Review


3 Analysis of Statically Determinate Trusses

3.1 Common Types of Trusses

3.2 Classification of Coplanar Trusses

3.3 The Method of Joints

3.4 Zero-Force Members

3.5 The Method of Sections

3.6 Compound Trusses

3.7 Complex Trusses

3.8 Space Trusses

Fundamental Problems


Project Problem

Chapter Review


4 Internal Loadings Developed in Structural Members

4.1 Internal Loadings at a Specified Point

4.2 Shear and Moment Functions

4.3 Shear and Moment Diagrams for a Beam

4.4 Shear and Moment Diagrams for a Frame

4.5 Moment Diagrams Constructed by the Method of Superposition

Preliminary Problems

Fundamental Problems


Project Problems

Chapter Review


5 Cables and Arches

5.1 Cables

5.2 Cable Subjected to Concentrated Loads

5.3 Cable Subjected to a Uniform Distributed Load

5.4 Arches

5.5 Three-Hinged Arch


Chapter Review


6 Influence Lines for Statically Determinate Structures

6.1 Influence Lines

6.2 Influence Lines for Beams

6.3 Qualitative Influence Lines

6.4 Influence Lines for Floor Girders

6.5 Influence Lines for Trusses

6.6 Maximum Influence at a Point due to a Series of Concentrated Loads

6.7 Absolute Maximum Shear and Moment

Fundamental Problems


Project Problem

Chapter Review


7 Deflections

7.1 Deflection Diagrams and the Elastic Curve

7.2 Elastic-Beam Theory

7.3 The Double Integration Method

7.4 Moment-Area Theorems

7.5 Conjugate-Beam Method

Preliminary Problems

Fundamental Problems


Chapter Review


8 Deflections Using Energy Methods

8.1 External Work and Strain energy

8.2 Principle of Work and energy

8.3 Principle of Virtual Work

8.4 Method of Virtual Work: Trusses

8.5 Castigliano’s Theorem

8.6 Castigliano’s Theorem for Trusses

8.7 Method of Virtual Work: Beams and Frames

8.8 Virtual Strain Energy Caused by Axial Load, Shear, Torsion, and Temperature

8.9 Castigliano’s Theorem for Beams and Frames

Fundamental Problems


Chapter Review


9 Analysis of Statically Indeterminate Structures by the Force Method

9.1 Statically Indeterminate Structures

9.2 Force Method of Analysis: General Procedure

9.3 Maxwell’s Theorem of Reciprocal Displacements

9.4 Force Method of Analysis: Beams

9.5 Force Method of Analysis: Frames

9.6 Force Method of Analysis: Trusses

9.7 Composite Structures

9.8 Symmetric Structures

9.9 Influence Lines for Statically Indeterminate Beams

9.10 Qualitative Influence Lines for Frames

Fundamental Problems


Chapter Review


10 Displacement Method of Analysis: Slope-Deflection Equations

10.1 Displacement Method of Analysis: General Procedures

10.2 Slope-Deflection equations

10.3 Analysis of Beams

10.4 Analysis of Frames: No Sidesway

10.5 Analysis of Frames: Sidesway


Project Problem

Chapter Review


11 Displacement Method of Analysis: Moment Distribution

11.1 General Principles and Definitions

11.2 Moment Distribution for Beams

11.3 Stiffness-Factor Modifications

11.4 Moment Distribution for Frames: No Sidesway

11.5 Moment Distribution for Frames: Sidesway


Chapter Review


12 Approximate Analysis of Statically Indeterminate Structures

12.1 Use of Approximate Methods

12.2 Trusses

12.3 Vertical Loads on Building Frames

12.4 Portal Frames and Trusses

12.5 Lateral Loads on Building Frames: Portal Method

12.6 Lateral Loads on Building Frames: Cantilever Method


Chapter Review


13 Beams and Frames Having Nonprismatic Members

13.1 Introduction

13.2 Loading Properties of Nonprismatic Members

13.3 Moment Distribution for Structures Having Nonprismatic Members

13.4 Slope-Deflection Equations for Nonprismatic Members


Chapter Review


14 Truss Analysis Using the Stiffness Method

14.1 Fundamentals of the Stiffness Method

14.2 Member Stiffness Matrix

14.3 Displacement and Force Transformation Matrices

14.4 Member Global Stiffness Matrix

14.5 Truss Stiffness Matrix

14.6 Application of the Stiffness Method for Truss Analysis

14.7 Nodal Coordinates

14.8 Trusses Having Thermal Changes and Fabrication errors

14.9 Space-Truss Analysis


Chapter Review


15 Beam Analysis Using the Stiffness Method

15.1 Preliminary Remarks

15.2 Beam-Member Stiffness Matrix

15.3 Beam-Structure Stiffness Matrix

15.4 Application of the Stiffness Method for Beam Analysis



16 Plane Frame Analysis Using the Stiffness Method

16.1 Frame-Member Stiffness Matrix

16.2 Displacement and Force Transformation Matrices

16.3 Frame-Member Global Stiffness Matrix

16.4 Application of the Stiffness Method for Frame Analysis



17 Structural Modeling and Computer Analysis

17.1 General Structural Modeling

17.2 Modeling a Structure and its Members

17.3 General Application of a Structural Analysis Computer Program

Computer Problems

Project Problems



A. Matrix Algebra for Structural Analysis

Preliminary Problems and Fundamental Problems Solutions

Answers to Selected Problems