Surrogate Modeling and Optimization
暫譯: 代理建模與優化

Kim, Nam-Ho

  • 出版商: Wiley
  • 出版日期: 2025-12-30
  • 售價: $5,000
  • 貴賓價: 9.5$4,750
  • 語言: 英文
  • 頁數: 466
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1394245815
  • ISBN-13: 9781394245819
  • 相關分類: 工程數學 Engineering-mathematics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Expert reference on building surrogate models, optimization using them, prediction uncertainty associate with them, and their potential failure, with practical implementation in MATLAB

Surrogate Modeling and Optimization explains the meaning of different surrogate models and provides an in-depth understanding of such surrogates, emphasizing how much uncertainty is associated with them, and when and how a surrogate model can fail in approximating complex functions and helping readers understand theory through practical implementation in MATLAB. This book enables readers to obtain an accurate approximate function using as few samples as possible, thereby allowing them to replace expensive computer simulations and experiments during design optimization, sensitivity analysis, and/or uncertainty quantification.

The book is organized into three parts. Part I introduces the basics of surrogate modeling. Part II reviews various theories and algorithms of design optimization. Part III presents advanced topics in surrogate modeling, including the Kriging surrogate, neural network models, multi-fidelity surrogates, and efficient global optimization using Kriging surrogates.

The book is divided into 10 chapters. Each chapter contains about 10 examples and 20 exercise problems. Lecture slides and a solution manual for exercise problems are available for instructors on a companion website.

Sample topics discussed in Surrogate Modeling and Optimization include:

  • Various designs of experiments, such as those developed for linear and quadratic polynomial response surfaces (PRS) in a boxlike design space
  • Criteria for constrained and unconstrained optimization and the most important optimization theories
  • Various numerical algorithms for gradient-based optimization
  • Gradient-free optimization algorithms, often referred to as global search algorithms, which do not require gradient or Hessian information
  • Detailed explanations and implementation on Kriging surrogate, often referred to as Gaussian Process, especially when samples include noise
  • The combination of a small number of high-fidelity samples with many low-fidelity samples to improve prediction accuracy
  • Neural network models, focusing on training uncertainty and its effect on prediction uncertainty
  • Efficient global optimization using either polynomial response surfaces or Kriging surrofates

Surrogate Modeling and Optimization is an essential learning companion for senior-level undergraduate and graduate students in all engineering disciplines, including mechanical, aerospace, civil, biomedical, and electrical engineering. The book is also valuable for industrial practitioners who apply the surrogate model to solve their optimization problems.

商品描述(中文翻譯)

專家參考書,涵蓋建立代理模型、使用代理模型進行優化、與之相關的預測不確定性及其潛在失敗,並提供 MATLAB 的實際實現

代理建模與優化 解釋了不同代理模型的含義,並提供對這些代理的深入理解,強調與之相關的不確定性有多大,以及代理模型在近似複雜函數時何時及如何可能失敗,幫助讀者通過在 MATLAB 中的實際實現來理解理論。本書使讀者能夠使用最少的樣本獲得準確的近似函數,從而在設計優化、靈敏度分析和/或不確定性量化過程中替代昂貴的計算機模擬和實驗。

本書分為三個部分。第一部分介紹代理建模的基本概念。第二部分回顧設計優化的各種理論和算法。第三部分介紹代理建模的進階主題,包括 Kriging 代理、神經網絡模型、多保真度代理以及使用 Kriging 代理的高效全局優化。

本書共分為 10 章。每章包含約 10 個範例和 20 道練習題。講義幻燈片和練習題的解答手冊可在伴隨網站上供教師使用。

代理建模與優化 中討論的範例主題包括:


  • 各種實驗設計,例如為箱形設計空間中的線性和二次多項式響應面 (PRS) 開發的設計

  • 受限和不受限優化的標準及最重要的優化理論

  • 基於梯度的優化的各種數值算法

  • 無梯度優化算法,通常稱為全局搜索算法,這些算法不需要梯度或 Hessian 信息

  • 對 Kriging 代理的詳細解釋和實現,通常稱為高斯過程,特別是在樣本包含噪聲時

  • 將少量高保真樣本與大量低保真樣本結合以提高預測準確性

  • 神經網絡模型,重點關注訓練不確定性及其對預測不確定性的影響

  • 使用多項式響應面或 Kriging 代理的高效全局優化

代理建模與優化 是所有工程學科(包括機械工程、航空航天工程、土木工程、生物醫學工程和電氣工程)高年級本科生和研究生的重要學習伴侶。本書對於將代理模型應用於解決優化問題的工業從業者也具有重要價值。

作者簡介

Nam-Ho Kim is a Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida. His research interests include design under uncertainty, prognostics and health management, verification validation and uncertainty quantification, and nonlinear structural mechanics. He has more than twenty years of experience teaching materials in these fields to graduate students.

作者簡介(中文翻譯)

金南浩是佛羅里達大學機械與航空工程系的教授。他的研究興趣包括不確定性下的設計、預測與健康管理、驗證與驗證以及不確定性量化,以及非線性結構力學。他在這些領域教授研究生課程已有超過二十年的經驗。