Computer Vision Metrics: Survey, Taxonomy, and Analysis(BY dhl)
暫譯: 計算機視覺指標:調查、分類與分析(由 dhl 著)
Scott Krig
- 出版商: Apress
- 出版日期: 2014-05-30
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 508
- 裝訂: Paperback
- ISBN: 1430259299
- ISBN-13: 9781430259299
-
相關分類:
Computer Vision
-
相關翻譯:
計算機視覺度量深入解析 (Computer Vision Metrics Survey, Taxonomy, and Analysis) (簡中版)
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
逆向工程技術與系統$380$342 -
電路板電氣測試與AOI檢驗技術簡介$1,500$1,425 -
The Algorithm Design Manual, 2/e (Hardcover)$3,460$3,287 -
$450學習 OpenCV (中文版) (Learning OpenCV: Computer Vision with the OpenCV Library) -
自動化光學檢測(AOI)$1,200$1,140 -
光機電產業設備系統設計$520$468 -
自動化光學檢測$520$494 -
OpenCV 程式設計參考手冊$620$490 -
Arduino Computer Vision Programming$1,190$1,131 -
$301OpenCV 計算機視覺編程攻略, 2/e -
$534OpenCV 圖像處理編程實例 -
$414Python 計算機視覺編程 (Programming Computer Vision with Python) -
網站擷取|使用 Python (Web Scraping with Python: Collecting Data from the Modern Web)$580$458 -
UX 從新手開始|使用者體驗的 100堂必修課 (UX for Beginners: A Crash Course in 100 Short Lessons)$480$379 -
$534OpenCV 編程案例詳解 -
$354OpenCV 實例精解 -
Python 初學特訓班 (附250分鐘影音教學/範例程式)$480$379 -
今天不學機器學習,明天就被機器取代:從 Python 入手+演算法$590$502 -
$294數學之美, 2/e -
超圖解 Arduino 互動設計入門, 3/e$680$578 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
深度學習快速入門 — 使用 TensorFlow (Getting started with TensorFlow)
$360$281 -
Android 初學特訓班, 7/e (適用 Android 6.x~7.x / 全新Android Studio 2.X開發,附影音)$480$379 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
Microsoft SQL Server 2016 管理實戰$699$552
相關主題
商品描述
Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.
商品描述(中文翻譯)
《電腦視覺指標》提供了對於超過100種當前及歷史的特徵描述和機器視覺方法的廣泛調查與分析,並詳細分類了局部、區域和全局特徵。本書提供了必要的背景知識,以幫助讀者理解為何興趣點檢測器和特徵描述符能夠有效運作,這些方法是如何設計的,並對於調整這些方法以達成特定應用的穩健性和不變性目標進行觀察。這項調查的範圍比深度更廣,提供了超過540個參考文獻以供深入研究。分類包括搜尋方法、頻譜成分、描述符表示、形狀、距離函數、準確性、效率、穩健性和不變性屬性等。與其提供「如何做」的源代碼範例和捷徑,本書則提供了一種對比討論,針對許多可供實務工作者使用的優秀 OpenCV 社群源代碼資源。
