Applied Genetic Programming and Machine Learning (Hardcover)
暫譯: 應用遺傳程式設計與機器學習 (精裝版)
Hitoshi Iba, Yoshihiko Hasegawa, Topon Kumar Paul
- 出版商: CRC
- 出版日期: 2009-08-01
- 售價: $3,200
- 貴賓價: 9.5 折 $3,040
- 語言: 英文
- 頁數: 349
- 裝訂: Hardcover
- ISBN: 1439803692
- ISBN-13: 9781439803691
-
相關分類:
Machine Learning
-
其他版本:
Applied Genetic Programming and Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
Computer Architecture and Organization, 3/e$950$931 -
時間管理─給系統管理者 (Time Management for System Administrators)$480$379 -
鳥哥的 Linux 伺服器架設篇, 2/e$780$663 -
Peopleware:腦力密集產業的人才管理之道 (Peopleware: Productive Projects and Teams, 2/e)$380$300 -
UML 精華 ─ 增訂 SysML、Real-time 與 Workflow 概念, 3/e (UML Distilled, 3/e)$560$442 -
大話設計模式$620$490 -
iPhone 創意程式設計家, 2/e (適用 SDK 3、SDK 4)$530$419 -
SQL Server 2008 SSIS 整合服務$780$616 -
XOOPS 2.3 架站王:快速架設、佈景主題、外掛模組$480$408 -
Google Android 設計招式之美$450$405 -
PHP + Ajax 網頁模組隨學隨用$480$408 -
專案管理概論實力養成暨評量, 2/e$280$221 -
jQuery 開發實戰 (Learning jQuery 1.3)$520$411 -
Windows Device Driver Programming 驅動程式設計$650$553 -
Google Android 2.X 應用程式開發實戰$520$411 -
$1,862Succeeding with Agile: Software Development Using Scrum (Paperback) -
鳥哥的 Linux 私房菜-基礎學習篇, 3/e$820$648 -
Google!Android 2 手機應用程式設計入門, 3/e$530$419 -
ASP.NET 4.0 專題實務-使用 C#$750$593 -
HTML5 & API 網頁程式設計$450$383 -
軟體構築美學:當專案團隊遇上失控程式,最真實的解決方案 (Brownfield Application Development in .Net)$650$514 -
Lightroom 3 聖經:有 10000 張相片就非看不可$580$493 -
Microsoft SharePoint 2010 企業內容管理與網頁設計$950$751 -
Hyper-V R2 叢集虛擬化技術-容錯移轉、線上備份、集中管理(附教學DVD)$520$364 -
Oracle 管理之道$890$703
商品描述
What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic Programming (GP) for practical applications.
Reflecting rapidly developing concepts and emerging paradigms, this book outlines how to use machine learning techniques, make learning operators that efficiently sample a search space, navigate the search process through the design of objective fitness functions, and examine the search performance of the evolutionary system. It provides a methodology for integrating GP and machine learning techniques, establishing a robust evolutionary framework for addressing tasks from areas such as chaotic time-series prediction, system identification, financial forecasting, classification, and data mining.
The book provides a starting point for the research of extended GP frameworks with the integration of several machine learning schemes. Drawing on empirical studies taken from fields such as system identification, finanical engineering, and bio-informatics, it demonstrates how the proposed methodology can be useful in practical inductive problem solving.
商品描述(中文翻譯)
金融數據預測、日內交易規則開發和生物標記選擇有什麼共同點?這些都是可以透過遺傳編程(Genetic Programming, GP)和機器學習技術解決的任務之一。由該領域的領導者撰寫的《應用遺傳編程與機器學習》(Applied Genetic Programming and Machine Learning)闡明了遺傳編程在實際應用中的擴展。
本書反映了快速發展的概念和新興的範式,概述了如何使用機器學習技術,製作有效取樣搜尋空間的學習運算子,通過設計目標適應度函數來導航搜尋過程,並檢查進化系統的搜尋性能。它提供了一種將遺傳編程與機器學習技術整合的方法論,建立了一個穩健的進化框架,以解決來自混沌時間序列預測、系統識別、金融預測、分類和數據挖掘等領域的任務。
本書為擴展的遺傳編程框架的研究提供了一個起點,並整合了幾種機器學習方案。通過來自系統識別、金融工程和生物資訊學等領域的實證研究,展示了所提出的方法論在實際歸納問題解決中的實用性。
