Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects
暫譯: 豐富參數化的線性模型:使用隨機效應的加法、時間序列和空間模型

Hodges, James S.

相關主題

商品描述

A First Step toward a Unified Theory of Richly Parameterized Linear Models

Using mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based understanding of models with random effects.

Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The author examines what is known and unknown about mixed linear models and identifies research opportunities.

The first two parts of the book cover an existing syntax for unifying models with random effects. The text explains how richly parameterized models can be expressed as mixed linear models and analyzed using conventional and Bayesian methods.

In the last two parts, the author discusses oddities that can arise when analyzing data using these models. He presents ways to detect problems and, when possible, shows how to mitigate or avoid them. The book adapts ideas from linear model theory and then goes beyond that theory by examining the information in the data about the mixed linear model's covariance matrices.

Each chapter ends with two sets of exercises. Conventional problems encourage readers to practice with the algebraic methods and open questions motivate readers to research further. Supporting materials, including datasets for most of the examples analyzed, are available on the author's website.

商品描述(中文翻譯)

邁向統一的豐富參數線性模型理論的第一步

使用混合線性模型來分析數據常常會導致神秘、不便或錯誤的結果。更糟的是,統計學家缺乏一個有凝聚力的資源來獲得對隨機效應模型的系統性、理論基礎的理解。

豐富參數線性模型:使用隨機效應的加法、時間序列和空間模型 在發展豐富參數模型的完整理論上邁出了第一步,這將使統計學家能夠更好地理解他們的分析結果。作者檢視了關於混合線性模型的已知與未知,並識別出研究機會。

本書的前兩部分涵蓋了統一隨機效應模型的現有語法。文本解釋了如何將豐富參數模型表達為混合線性模型,並使用傳統和貝葉斯方法進行分析。

在最後兩部分中,作者討論了在使用這些模型分析數據時可能出現的奇異情況。他提出了檢測問題的方法,並在可能的情況下展示如何減輕或避免這些問題。本書採用了線性模型理論的概念,並通過檢視數據中關於混合線性模型的協方差矩陣的信息,超越了該理論。

每章結尾都有兩組練習題。傳統問題鼓勵讀者練習代數方法,而開放性問題則激勵讀者進一步研究。支持材料,包括大多數分析示例的數據集,均可在作者的網站上獲得。