Ensemble Machine Learning: Methods and Applications (Hardcover)

Cha Zhang, Yunqian Ma

  • 出版商: Springer
  • 出版日期: 2012-02-17
  • 售價: $7,490
  • 貴賓價: 9.5$7,116
  • 語言: 英文
  • 頁數: 332
  • 裝訂: Hardcover
  • ISBN: 1441993258
  • ISBN-13: 9781441993250
  • 相關分類: 機器學習 Machine Learning

下單後立即進貨 (約1週~2週)

買這商品的人也買了...

相關主題

商品描述

It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.