Ensemble Machine Learning: Methods and Applications (Hardcover)
暫譯: 集成機器學習:方法與應用(精裝版)
Cha Zhang, Yunqian Ma
- 出版商: Springer
- 出版日期: 2012-02-17
- 售價: $9,820
- 貴賓價: 9.5 折 $9,329
- 語言: 英文
- 頁數: 332
- 裝訂: Hardcover
- ISBN: 1441993258
- ISBN-13: 9781441993250
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
Google App Inventor$1,400$1,330 -
$990Android Apps with App Inventor: The Fast and Easy Way to Build Android Apps (Paperback) -
Android 手機程式超簡單!! App Inventor 入門卷$420$378 -
MIT App Inventor 開發手冊─不會寫程式也能設計你的 App$520$442 -
Android 手機程式超簡單!! App Inventor 機器人卷
$480$432 -
$474Unity AR 增強現實完全自學教程 (全彩) -
$378統計學入門:文科生也能看得懂的統計學, 5/e -
超簡單!Python 與 Excel 整合應用 150技$480$408 -
Python 論文數據統計分析$540$486 -
文科生也學得會!資料 科學 ✕ 機器學習實戰 探索 - 使用 Excel$550$435 -
元宇宙$600$510 -
資料科學輕鬆學 (Data Analytics Made Accessible)$480$379 -
The R Book, 3/e (Hardcover)$3,650$3,468 -
【圖解】從入門到精通 Excel ╳ Python 資料處理術:搭配工作實務場景,輕鬆學會除錯、擷取、排序、彙整指定數據,製作QR碼也沒問題$500$395 -
決斷的演算:預測、分析與好決定的 11堂邏輯課, 3/e$580$493 -
快速學會 WordPress 網站設計, 2/e (舊名: 文組女孩也能上手的 WordPress 架站手冊)$450$383 -
深入淺出 Java 程式設計, 3/e (Head First Java, 3/e)$980$774 -
跟著實務學習 HTML、CSS、JavaScript、Bootstrap、JQuery、JQueryMobile 網頁設計 (含ITS HTML&CSS國際認證模擬試題)$560$442 -
WordPress 網站架設實務:活用網站客製化、佈景主題與 ChatGPT 外掛開發的16堂課$780$608 -
資料可視化王者 -- 用 Python 讓 AI 活躍在圖表世界中$1,580$1,248 -
全面掌握 Gemini 開發實務:輕鬆駕馭 Google AI 引擎$680$537 -
讓 AI 好好說話!從頭打造 LLM (大型語言模型) 實戰秘笈$680$537 -
寫程式的 AI 戰友 – VS Code x GitHub Copilot$720$569 -
Linux 隨身指南:必備指令, 4/e (Linux Pocket Guide: Essential Commands, 4/e)$580$458 -
從零開始學 Python 程式設計(ChatGPT 5加強版)(適用Python 3.10以上)$780$608
商品描述
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
商品描述(中文翻譯)
收集各種觀點和意見以改善決策過程是常識,事實上,這也是民主社會的基礎。這種被計算智能和機器學習研究者稱為「集成學習」的概念,已知能提高決策系統的穩健性和準確性。現在,隨著新進展的出現,研究人員能夠在越來越多的現實應用中釋放集成學習的潛力。集成學習算法,如「提升法」(boosting)和「隨機森林」(random forest),促進了解決關鍵計算問題的方案,例如人臉識別,並且現在已應用於物體追蹤和生物資訊學等多個領域。
針對專門文獻的短缺,本書全面涵蓋了最先進的集成學習技術,包括在Xbox Kinect感應器中使用的隨機森林骨架追蹤算法,該算法無需遊戲控制器。這本書同時是堅實的理論研究和實用指南,對於研究人員和實務工作者來說都是一個意外的收穫。
