Data Classification: Algorithms and Applications (Hardcover)
暫譯: 數據分類:演算法與應用(精裝版)
Charu C. Aggarwal
- 出版商: CRC
- 出版日期: 2014-07-25
- 售價: $3,500
- 貴賓價: 9.5 折 $3,325
- 語言: 英文
- 頁數: 707
- 裝訂: Hardcover
- ISBN: 1466586745
- ISBN-13: 9781466586741
-
相關分類:
Data-mining
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
Linux Device Driver Programming 驅動程式設計$690$587 -
鳥哥的 Linux 私房菜-基礎學習篇, 3/e$820$648 -
Processing 入門-互動式圖形實作介紹 (Getting Started with Processing)$400$316 -
MATLAB 程式設計-進階篇, 2/e$560$442 -
Arduino DUE R3 ARM 32位(相容板)附 micro USB線 | Atmel SAM3X8E$1,360$1,292 -
$354Node.js 入門經典 (Sams Teach Yourself Node.js in 24 Hours) -
3D 虛擬實境設計:FancyDesigner 的實務應用$380$300 -
Python 錦囊妙計, 3/e (Python Cookbook, 3/e)$880$695 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
網站滲透測試實務入門$380$300 -
養成 iOS 8 App 程式設計實力的 25 堂課-最新 Swift 開發教學(A Practical Guide to Building Your First App from Scratch: Beginning iOS 8 Programming with Swift)$580$452 -
Swift初學特訓班--iOS App 開發快速養成與實戰(附近3小時新手入門與關鍵影音教學/全書範例程式)$420$332 -
深入理解 Android 核心設計思想-應用實測篇$380$323 -
Raspberry Pi 超炫專案與完全實戰 (深入 Raspberry Pi 的全面開發經典) (附101段教學與執行影片/範例程式)$520$411 -
Python 程式設計入門 (適用於 2.x 與 3.x 版)$620$484 -
Kali Linux 滲透測試工具$490$387 -
LinkIt ONE 物聯網實作入門$280$252 -
Docker 入門與實戰$450$356 -
你不能錯過的 CSS 指南:實用 X 必用 X 拿來即用的 400 段程式碼 + 151 個範例$490$387 -
達標!Windows 10$520$442 -
R 軟體資料分析基礎與應用 (R for Everyone: Advanced Analytics and Graphics)$650$553 -
PHP、MySQL 與 JavaScript 學習手冊, 4/e (Learning PHP, MySQL & JavaScript: With jQuery, CSS & HTML5, 4/e)$980$774 -
OpenCV 程式設計參考手冊$620$490 -
接案我最行:jQuery 經典範例必殺技$480$408 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284
商品描述
Comprehensive Coverage of the Entire Area of Classification
Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data.
This comprehensive book focuses on three primary aspects of data classification:
- Methods-The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks.
- Domains-The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm.
- Variations-The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.
商品描述(中文翻譯)
全面涵蓋分類領域的所有範疇
分類問題的研究往往在模式識別、資料庫、資料探勘和機器學習等領域中呈現出碎片化的狀態。資料分類:演算法與應用 以統一的方式探討這些不同社群的工作,深入分析分類的基本演算法以及在多種問題領域中的應用,包括文本、多媒體、社交網路和生物資料。
這本全面的書籍專注於資料分類的三個主要方面:
- 方法-本書首先描述用於分類的常見技術,包括機率方法、決策樹、基於規則的方法、基於實例的方法、支持向量機方法和神經網絡。
- 領域-接著,本書檢視用於特定資料領域的方法,如多媒體、文本、時間序列、網路、離散序列和不確定資料。由於大數據範式的近期重要性,它還涵蓋了大型資料集和資料流。
- 變化-本書最後提供了對分類過程變化的見解。它討論了集成學習、稀有類別學習、距離函數學習、主動學習、視覺學習、遷移學習和半監督學習,以及分類器的評估方面。
