Implications of Self-organization: Building Vector Quantizers and Classifiers with Self-organizing Maps
暫譯: 自組織的影響:使用自組織映射構建向量量化器和分類器
Arijit Laha
- 出版商: CRC
- 出版日期: 2016-04-01
- 售價: $3,290
- 貴賓價: 9.5 折 $3,126
- 語言: 英文
- 頁數: 350
- 裝訂: Hardcover
- ISBN: 1482224453
- ISBN-13: 9781482224450
海外代購書籍(需單獨結帳)
相關主題
商品描述
Self-organizing maps (SOMs) are among the most interesting classes of neural networks due to their ability to map a non-linear, high-dimensional data space onto a lower dimension, regular lattice space. The resulting mapping exhibits two useful properties: topology preservation and density matching. This self-contained book discusses topology preservation and density matching properties of SOMs and their implications explicitly in the context of pattern recognition tasks. It also looks at how to exploit SOMs for improving system performances.
商品描述(中文翻譯)
自組織映射(Self-organizing maps, SOMs)是最有趣的神經網絡類別之一,因為它們能夠將非線性、高維度的數據空間映射到較低維度的規則格子空間。所得到的映射展現了兩個有用的特性:拓撲保持和密度匹配。本書自成一體,明確討論了SOMs的拓撲保持和密度匹配特性及其在模式識別任務中的影響。它還探討了如何利用SOMs來改善系統性能。