Machine Learning Using R
暫譯: 使用 R 的機器學習
Karthik Ramasubramanian, Abhishek Singh
- 出版商: Apress
- 出版日期: 2016-12-24
- 售價: $1,870
- 貴賓價: 9.5 折 $1,777
- 語言: 英文
- 頁數: 566
- 裝訂: Paperback
- ISBN: 1484223330
- ISBN-13: 9781484223338
-
相關分類:
R 語言、Machine Learning
-
相關翻譯:
R語言機器學習 (簡中版)
買這商品的人也買了...
-
無瑕的程式碼 - 敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
Data Science for Business: What you need to know about data mining and data-analytic thinking (Paperback)$1,980$1,881 -
告別瀑布,擁抱 Scrum:解析微軟與 Adobe 如何在 30 天內開發出新軟體 (Software in 30 Days: How Agile Managers Beat the Odds, Delight Their Customers, And Leave Competitors In the Dust)$320$250 -
精實開發與看板方法$550$435 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
Criminalistics: An Introduction to Forensic Science,Global Edition , 11/e (GE)$2,500$2,450 -
$294鳳凰計畫:一個 IT計畫的傳奇故事 (The Phoenix Project : A Novel about IT, DevOps, and Helping your business win)(沙盤特別版) -
使用者故事對照 (User Story Mapping: Discover the Whole Story, Build the Right Product)$580$458 -
Essential Scrum:敏捷開發經典 (中文版) (Essential Scrum: A Practical Guide to the Most Popular Agile Process)
$680$530 -
UX 從新手開始|使用者體驗的 100堂必修課 (UX for Beginners: A Crash Course in 100 Short Lessons)$480$379 -
精實企業|高績效組織如何達成創新規模化 (Lean Enterprise: How High Performance Organizations Innovate at Scale)$450$356 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
Scrum ─ 大型專案開發進化 ─ 用 LeSS 框架完成更多的事 (Large-Scale Scrum: More with LeSS)$580$458 -
無瑕的程式碼-敏捷完整篇-物件導向原則、設計模式與 C# 實踐 (Agile principles, patterns, and practices in C#)$790$616 -
高品質微服務|建構跨工程組織的標準化系統 (Production-Ready Microservices: Building Standardized Systems Across an Engineering Organization)$450$356 -
Agile 成功法則|敏捷實作者的解決方案 (Real World Agility: Practical Guidance for Agile Practitioners)$480$408 -
精實 UX 設計|帶領敏捷團隊打造出色的產品, 2/e (Lean UX: Designing Great Products with Agile Teams, 2/e)$450$356 -
看板實戰 : 用一張便利貼訓練出100分高效率工作團隊 (Kanban in Action)$560$476 -
單元測試的藝術, 2/e (The Art of Unit Testing: with examples in C#, 2/e)$650$507 -
R 資料科學 (R for Data Science)$780$616 -
Mapping Experiences 看得見的經驗|創造價值從經驗圖像化開始 (Mapping Experiences)$680$537 -
軟體專案開發實務|別只當編程猴 (Programming Beyond Practices: Be More Than Just a Code Monkey)$400$316 -
網站可靠性工程|Google 的系統管理之道 (Site Reliability Engineering: How Google Runs Production Systems)(SRE)-*外觀稍有瑕疵,不介意者再下單$780$616 -
為你自己學 Git$500$425 -
iOS App 開發實務$450$383
商品描述
Examine the latest technological advancements in building a scalable machine learning model with Big Data using R. This book shows you how to work with a machine learning algorithm and use it to build a ML model from raw data.
All practical demonstrations will be explored in R, a powerful programming language and software environment for statistical computing and graphics. The various packages and methods available in R will be used to explain the topics. For every machine learning algorithm covered in this book, a 3-D approach of theory, case-study and practice will be given. And where appropriate, the mathematics will be explained through visualization in R. All the images are available in color and hi-res as part of the code download.
This new paradigm of teaching machine learning will bring about a radical change in perception for many of those who think this subject is difficult to learn. Though theory sometimes looks difficult, especially when there is heavy mathematics involved, the seamless flow from the theoretical aspects to example-driven learning provided in this book makes it easy for someone to connect the dots..
- Use the model building process flow
- Apply theoretical aspects of machine learning
- Review industry-based cae studies
- Understand ML algorithms using R
- Build machine learning models using Apache Hadoop and Spark
商品描述(中文翻譯)
探討使用 R 建立可擴展機器學習模型的最新技術進展,並結合大數據。本書將教您如何使用機器學習演算法,並從原始數據構建 ML 模型。
所有實用的示範將在 R 中進行,這是一種強大的編程語言和統計計算及圖形的軟體環境。本書將使用 R 中的各種套件和方法來解釋主題。對於本書中涵蓋的每一種機器學習演算法,將提供理論、案例研究和實踐的三維方法。在適當的情況下,數學將通過 R 中的可視化進行解釋。所有圖像都將作為代碼下載的一部分提供彩色和高解析度版本。
這種新的機器學習教學範式將為許多認為這個主題難以學習的人帶來根本性的認知變化。儘管理論有時看起來很困難,特別是當涉及大量數學時,但本書提供的從理論到以範例驅動的學習的無縫過渡,使得讀者能夠輕鬆地將各個部分連接起來。
- 使用模型構建過程流程
- 應用機器學習的理論方面
- 回顧基於行業的案例研究
- 使用 R 理解 ML 演算法
- 使用 Apache Hadoop 和 Spark 構建機器學習模型
