買這商品的人也買了...
-
21 世紀 C 語言 (21st Century C: C Tips from the New School)$580$458 -
$556Scala 程式設計, 2/e (Programming Scala: Scalability = Functional Programming + Objects, 2/e) -
$788Functional Programming in R: Advanced Statistical Programming for Data Science, Analysis and Finance -
$824Advanced Object-Oriented Programming in R: Statistical Programming for Data Science, Analysis and Finance -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
Python 新手使用 Django 架站技術實作:活用 Django 2.0 Web Framework 建構動態網站的 16堂課$690$538 -
Julia 程式設計:新世代資料科學與數值運算語言$480$432 -
Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis$3,350$3,183 -
Docker 專業養成 ─ 活用基礎與實踐技能 (暢銷回饋版)$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
Python 設計模式$650$514 -
增壓的 Python|讓程式碼進化到全新境界 (Supercharged Python: Take Your Code to the Next Level)$680$578 -
C++ 函數式編程 (Functional Programming in C++: How to improve your C++ programs using functional techniques)$594$564 -
C++ 新經典:對象模型$474$450 -
C++ 新經典$834$792 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
Python 功力提升的樂趣|寫出乾淨程式碼的最佳實務 (Beyond the Basic Stuff with Python)$500$375 -
Deep Learning 3|用 Python 進行深度學習框架的開發實作$780$616 -
Python 刷題鍛鍊班:老手都刷過的 50 道程式題, 求職面試最給力 (Python Workout: 50 ten-minute exercises)$480$379 -
CPython Internals: Your Guide to the Python 3 Interpreter (Paperback)$1,580$1,501 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
C++ 新經典:模板與泛型編程$534$507 -
高級 C/C++ 編譯技術 (典藏版)$534$507 -
$774Django 5 Web 應用開發實戰 -
FastAPI|現代 Python 網站開發 (FastAPI : Modern Python Web Development)$680$537
商品描述
Get an introduction to functional data structures using R and write more effective code and gain performance for your programs. This book teaches you workarounds because data in functional languages is not mutable: for example you’ll learn how to change variable-value bindings by modifying environments, which can be exploited to emulate pointers and implement traditional data structures. You’ll also see how, by abandoning traditional data structures, you can manipulate structures by building new versions rather than modifying them. You’ll discover how these so-called functional data structures are different from the traditional data structures you might know, but are worth understanding to do serious algorithmic programming in a functional language such as R.
By the end of Functional Data Structures in R, you’ll understand the choices to make in order to most effectively work with data structures when you cannot modify the data itself. These techniques are especially applicable for algorithmic development important in big data, finance, and other data science applications.
What You'll Learn
- Carry out algorithmic programming in R
- Use abstract data structures
- Work with both immutable and persistent data
- Emulate pointers and implement traditional data structures in R
- Build new versions of traditional data structures that are known
Who This Book Is For
Experienced or advanced programmers with at least a comfort level with R. Some experience with data structures recommended.
商品描述(中文翻譯)
獲得使用 R 的函數式資料結構介紹,撰寫更有效的程式碼並提升程式的效能。本書教您如何處理因為函數式語言中的資料是不可變的而產生的問題:例如,您將學習如何透過修改環境來改變變數與值的綁定,這可以用來模擬指標並實現傳統資料結構。您還將看到,通過放棄傳統資料結構,您可以透過建立新版本來操作結構,而不是修改它們。您將發現這些所謂的函數式資料結構與您可能熟悉的傳統資料結構有何不同,但了解它們對於在函數式語言如 R 中進行嚴謹的演算法編程是值得的。
在《Functional Data Structures in R》的結尾,您將了解在無法修改資料本身的情況下,如何有效地選擇資料結構進行操作。這些技術特別適用於在大數據、金融及其他資料科學應用中重要的演算法開發。
您將學到的內容:
- 在 R 中進行演算法編程
- 使用抽象資料結構
- 處理不可變和持久資料
- 在 R 中模擬指標並實現傳統資料結構
- 建立已知的傳統資料結構的新版本
本書適合對象:
有經驗或進階的程式設計師,至少對 R 有一定的熟悉程度。建議具備一些資料結構的經驗。
