Machine Learning with PySpark: With Natural Language Processing and Recommender Systems
暫譯: 使用 PySpark 的機器學習:自然語言處理與推薦系統
Pramod Singh
- 出版商: Apress
- 出版日期: 2018-12-15
- 定價: $1,160
- 售價: 6.0 折 $696
- 語言: 英文
- 頁數: 223
- 裝訂: Paperback
- ISBN: 1484241304
- ISBN-13: 9781484241301
-
相關分類:
Machine Learning、Natural Language Processing、推薦系統
-
相關翻譯:
PySpark 機器學習、自然語言處理與推薦系統 (Machine Learning with PySpark: With Natural Language Processing and Recommender Systems) (簡中版)
-
其他版本:
Machine Learning with PySpark: With Natural Language Processing and Recommender Systems
買這商品的人也買了...
-
$659Python 自然語言處理 (Natural Language Processing with Python) -
流暢的 Python|清晰、簡潔、有效的程式設計 (Fluent Python)$980$774 -
職業駭客的告白II部曲 - Python 和 Ruby 啟發式程式語言的秘密
$520$406 -
精通 Go 程式設計 (The Go Programming Language)$580$493 -
職業駭客的告白III部曲 -- C語言、組合語言與逆向工程的秘密
$490$382 -
高效率資料分析|使用 Python (Foundations for Analytics with Python)$580$458 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
$293Python 網絡爬蟲實戰 -
Python 專家實踐指南|搭乘專業開發者的學習便車 (The Hitchhiker's Guide to Python: Best Practices for Development)$580$458 -
$403TensorFlow 實戰 -
$474面向機器學習的自然語言標註 (Natural language annotation for macbhine learning) -
$294NLTK 基礎教程 — 用 NLTK 和 Python 庫構建機器學習應用 (NLTK Essentials) -
$474深度學習原理與TensorFlow實踐 -
$354Node.js 區塊鏈開發 -
$301精通 Python 自然語言處理 (Mastering Natural Language Processing with Python) -
$384PyQt5 快速開發與實戰 -
為你自己學 Git$500$425 -
$1,128PySpark Recipes: A Problem-Solution Approach with PySpark2 -
Python 資料科學學習手冊 (Python Data Science Handbook: Essential Tools for Working with Data)$780$616 -
Python 技術手冊, 3/e (Python in a Nutshell: A Desktop Quick Reference, 3/e)$880$695 -
特洛伊木馬病毒程式設計:使用 Python$520$406 -
$1,258Advanced Deep Learning with Keras: Applying GANs and other new deep learning algorithms to the real world (Paperback) -
還在漫無頭緒?一本書帶你走完 Python 深度學習$690$587 -
Machine Learning for Healthcare Analytics Projects: Build smart AI applications using neural network methodologies across the healthcare vertical market$1,080$1,026 -
PyTorch 深度學習與自然語言中文處理$420$328
商品描述
Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark.
Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification.
After reading this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.
What You Will Learn
- Build a spectrum of supervised and unsupervised machine learning algorithms
- Implement machine learning algorithms with Spark MLlib libraries
- Develop a recommender system with Spark MLlib libraries
- Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model
Who This Book Is For
Data science and machine learning professionals.
商品描述(中文翻譯)
建立機器學習模型、自然語言處理應用程式和推薦系統,使用 PySpark 解決各種商業挑戰。本書從 Spark 的基本概念及其演變開始,然後涵蓋傳統機器學習演算法的整個範疇,以及使用 PySpark 的自然語言處理和推薦系統。
《Machine Learning with PySpark》將教你如何建立監督式機器學習模型,例如線性回歸、邏輯回歸、決策樹和隨機森林。你還將看到非監督式機器學習模型,例如 K-means 和層次聚類。本書的主要部分專注於特徵工程,使用 PySpark 創建有用的特徵來訓練機器學習模型。自然語言處理部分涵蓋文本處理、文本挖掘和分類的嵌入技術。
閱讀完本書後,你將了解如何使用 PySpark 的機器學習庫來建立和訓練各種機器學習模型。此外,你將熟悉相關的 PySpark 組件,例如數據攝取、數據處理和數據分析,這些都可以用來開發數據驅動的智能應用程式。
**你將學到什麼**
- 建立一系列監督式和非監督式機器學習演算法
- 使用 Spark MLlib 庫實現機器學習演算法
- 使用 Spark MLlib 庫開發推薦系統
- 處理與特徵工程、類別平衡、偏差與方差以及交叉驗證相關的問題,以建立最佳擬合模型
**本書適合誰**
數據科學和機器學習專業人士。
