Thoughtful Machine Learning with Python: A Test-Driven Approach
暫譯: 深思熟慮的機器學習與 Python:測試驅動的方法
Matthew Kirk
- 出版商: O'Reilly
- 出版日期: 2017-02-21
- 定價: $1,480
- 售價: 9.0 折 $1,332
- 語言: 英文
- 頁數: 220
- 裝訂: Paperback
- ISBN: 1491924136
- ISBN-13: 9781491924136
-
相關分類:
Machine Learning、Python、TDD 測試導向開發
-
相關翻譯:
初探機器學習|使用 Python (Thoughtful Machine Learning with Python) (繁中版)
Python機器學習實踐:測試驅動的開發方法 (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
大話設計模式$620$490 -
無瑕的程式碼-敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
iPhone + Android 雙平台 APP 開發者要知道的事$480$384 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
最新 HTML5 + CSS3 網頁程式設計, 2/e$520$442 -
公開來源情資技術:線上資訊搜尋與分析資源 (Open Source Intelligence Techniques: Resources for Searching and Analyzing Online Information, 4/e)$1,887$1,665 -
Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks$1,050$1,029 -
$232Python 資訊視覺化編程實戰 (Python Data Visualization Cookbook) -
ASP.NET 4.6 網頁製作徹底研究 - 使用 C#$590$502 -
Python 機器學習 (Python Machine Learning)$580$452 -
Deep Learning in Object Recognition, Detection, and Segmentation$3,580$3,401 -
iOS 10 App 程式設計實力超進化實戰攻略 : 知名 iOS教學部落格 AppCoda 作家親授實作關鍵技巧讓你不NG$720$562 -
Windows Server 2016 系統管理與伺服器建置實戰
$650$507 -
Python 專家實踐指南|搭乘專業開發者的學習便車 (The Hitchhiker's Guide to Python: Best Practices for Development)$580$458 -
量化投資:以 Python 為工具$768$730 -
$474Tensorflow:實戰Google深度學習框架 -
圖解雲端技術|基礎架構x運作原理 x API$480$379 -
Laravel 啟動與運行 (Laravel: Up and Running: A Framework for Building Modern PHP Apps)$780$616 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
$1,888Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
為你自己學 Git$500$425 -
人類智慧的神殿:AI知識圖譜實作$890$703 -
Data Science on AWS: Implementing End-To-End, Continuous AI and Machine Learning Pipelines (Paperback)$2,575$2,439
商品描述
Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext.
Featuring graphs and highlighted code examples throughout, the book features tests with Python’s Numpy, Pandas, Scikit-Learn, and SciPy data science libraries. If you’re a software engineer or business analyst interested in data science, this book will help you:
- Reference real-world examples to test each algorithm through engaging, hands-on exercises
- Apply test-driven development (TDD) to write and run tests before you start coding
- Explore techniques for improving your machine-learning models with data extraction and feature development
- Watch out for the risks of machine learning, such as underfitting or overfitting data
- Work with K-Nearest Neighbors, neural networks, clustering, and other algorithms
商品描述(中文翻譯)
獲得在日常工作中應用機器學習所需的信心。這本實用指南的作者 Matthew Kirk 向您展示如何在代碼中整合和測試機器學習算法,而不需要學術背景。
本書中包含圖表和突出顯示的代碼範例,並使用 Python 的 Numpy、Pandas、Scikit-Learn 和 SciPy 數據科學庫進行測試。如果您是對數據科學感興趣的軟體工程師或商業分析師,這本書將幫助您:
- 參考現實世界的範例,通過引人入勝的實作練習來測試每個算法
- 應用測試驅動開發(TDD),在開始編碼之前編寫和運行測試
- 探索改進機器學習模型的技術,包括數據提取和特徵開發
- 注意機器學習的風險,例如欠擬合或過擬合數據
- 使用 K-最近鄰、神經網絡、聚類及其他算法進行工作
