Learning to Rank for Information Retrieval (Paperback)
暫譯: 資訊檢索中的學習排序
Tie-Yan Liu
- 出版商: Now Publishers Inc
- 出版日期: 2009-07-10
- 售價: $3,130
- 貴賓價: 9.5 折 $2,974
- 語言: 英文
- 頁數: 122
- 裝訂: Paperback
- ISBN: 1601982445
- ISBN-13: 9781601982445
-
相關分類:
Data-mining
無法訂購
買這商品的人也買了...
-
深入淺出 Java 程式設計, 2/e (Head First Java, 2/e)$880$695 -
深入淺出物件導向分析與設計 (Head First Object-Oriented Analysis and Design)$880$695 -
Interconnecting Cisco Network Devices, Part 1 (ICND1): CCNA Exam 640-802 and ICND1 Exam 640-822, 2/e$2,220$2,109 -
Java 重構-Java Refactoring$490$382 -
CorelDRAW X4 服裝設計精粹$580$458 -
Google Android 設計招式之美$450$405 -
網頁設計驚嘆號-Dreamweaver 至高的網頁特效 188 招$650$514 -
Windows Device Driver Programming 驅動程式設計$650$553 -
Flash ActionScript 3.0 範例應用 20 例$560$442 -
網頁設計驚嘆號:Dreamweaver X PHP 互動網站直擊$620$490 -
ASP.NET 專題實務 II-範例集與 4.0 新功能$620$490 -
深入淺出 Android 遊戲程式開發範例大全$620$484 -
活用 XHTML/HTML+CSS 並不難─164 個零組件的設計類型與解析,幫你搞定所有的網頁$490$382 -
站長親授!WordPress 3.0 部落格架站十堂課$420$332 -
猛虎出閘制霸版─最新 Java 專業認證 OCP Java SE 6 Programmer (原 SCJP 認證)$780$616 -
前進 Android Market!Google Android SDK 實戰演練$850$672 -
ASP.NET 4.0 專題實務 II-範例應用與 4.0 新功能, 2/e$750$593 -
Google Android SDK 開發範例大全, 3/e$950$751 -
Facebook 非賺不可-臉書行銷設計攻略$380$300 -
塗鴉牆的秘密-Facebook Graph API 實戰開發手冊$580$493 -
網頁設計師必學 iOS APP—iPhone/iPod touch/iPad APP 設計實戰:使用 HTML5 + CSS3 + JavaScript (The Web Designer's Guide to iOS Apps)
$400$316 -
科技 CEO 的創新 ╳ 創業學 (Founders at Work: Stories of Startups' Early Days)$550$435 -
學徒模式-優秀軟體開發者的養成之路 (Apprenticeship Patterns: Guidance for the Aspiring Software Craftsman)$420$332 -
iPad 應用開發實戰$480$408 -
Google!Android 3 手機應用程式設計入門, 4/e$550$435
相關主題
商品描述
Learning to Rank for Information Retrieval is an introduction to the field of learning to rank, a hot research topic in information retrieval and machine learning. It categorizes the state-of-the-art learning-to-rank algorithms into three approaches from a unified machine learning perspective, describes the loss functions and learning mechanisms in different approaches, reveals their relationships and differences, shows their empirical performances on real IR applications, and discusses their theoretical properties such as generalization ability. As a tutorial, Learning to Rank for Information Retrieval helps people find the answers to the following critical questions: To what respect are learning-to-rank algorithms similar and in which aspects do they differ? What are the strengths and weaknesses of each algorithm? Which learning-to-rank algorithm empirically performs the best? Is ranking a new machine learning problem? What are the unique theoretical issues for ranking as compared to classification and regression? Learning to Rank for Information Retrieval is both a guide for beginners who are embarking on research in this area, and a useful reference for established researchers and practitioners.
商品描述(中文翻譯)
《資訊檢索中的學習排序》是學習排序領域的入門書籍,這是一個在資訊檢索和機器學習中熱門的研究主題。它從統一的機器學習視角將最先進的學習排序演算法分類為三種方法,描述了不同方法中的損失函數和學習機制,揭示了它們之間的關係和差異,展示了它們在實際資訊檢索應用中的實證表現,並討論了它們的理論特性,例如泛化能力。作為一本教程,《資訊檢索中的學習排序》幫助人們找到以下關鍵問題的答案:學習排序演算法在何種方面相似,在哪些方面有所不同?每種演算法的優缺點是什麼?哪種學習排序演算法的實證表現最佳?排序是一個新的機器學習問題嗎?與分類和回歸相比,排序有哪些獨特的理論問題?《資訊檢索中的學習排序》既是對於初學者進入這一領域研究的指南,也是對於已建立的研究者和實務工作者的有用參考。
