Visual Information Retrieval using Java and LIRE (Paperback)
暫譯: 使用 Java 和 LIRE 的視覺資訊檢索 (平裝本)
Mathias Lux, Oge Marques
- 出版商: Morgan & Claypool
- 出版日期: 2013-01-01
- 售價: $1,500
- 貴賓價: 9.5 折 $1,425
- 語言: 英文
- 頁數: 112
- 裝訂: Paperback
- ISBN: 1608459187
- ISBN-13: 9781608459186
-
相關分類:
Java 程式語言
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
Cisco CCNA (640-802) 最新認證應考手冊$640$506 -
$299The Art of Application Performance Testing: Help for Programmers and Quality Assurance (Paperback) -
跟我學 PowerPoint 2010$450$356 -
電腦網際網路(第五版)(國際版)(Computer Networking: A Top-Down Approach, 5/e)$750$675 -
精通 MFC 視窗程式設計-Visual Studio 2010 版$810$640 -
iPhone 遊戲自作入門$580$458 -
蘋果專業訓練教材-iLife '11 (Apple Training Series: iLife '11)$780$663 -
Cloud Computing: Methodology, Systems, and Applications (Hardcover)$3,330$3,164 -
Android 核心剖析$650$514 -
實戰雲端作業系統建置與維護-VMware vSphere 5 虛擬化全面啟動
$680$537 -
JavaScript & jQuery: The Missing Manual 國際中文版, 2/e
$580$458 -
Arduino 錦囊妙計, 2/e (Arduino Cookbook, 2/e)$980$774 -
深入淺出 C (Head First C)$880$695 -
ASP.NET MVC 4 網站開發美學$680$537 -
系統分析與設計─理論與實務應用, 6/e$650$618 -
無瑕的程式碼 - 敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
Raspberry Pi 快速上手指南 (Raspberry Pi:A Quick-Start Guide)$420$378 -
超圖解 Arduino 互動設計入門 (附 Arduino UNO R3 開發板)$1,130$961 -
巨型網站大師親自指導─建立極速的 Web 站台的祕密$620$527 -
Arduino 基礎入門套件 (附範例程式下載連結)$950$903 -
易讀程式之美學-提升程式碼可讀性的簡單法則 (The Art of Readable Code)$480$379 -
搞懂 NoSQL 的 15 堂課 (NoSQL Distilled 中文版) (NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence)$360$284 -
Google 輕鬆玩-漫步在雲端 +Plus 加強版
$350$277 -
電子商務網站經營與管理:osCommerce, 2/e$480$379 -
Solr in Action (Paperback)$1,650$1,568
商品描述
Visual information retrieval (VIR) is an active and vibrant research area, which attempts at providing means for organizing, indexing, annotating, and retrieving visual information (images and videos) from large, unstructured repositories. The goal of VIR is to retrieve matches ranked by their relevance to a given query, which is often expressed as an example image and/or a series of keywords. During its early years (1995-2000), the research efforts were dominated by content-based approaches contributed primarily by the image and video processing community. During the past decade, it was widely recognized that the challenges imposed by the lack of coincidence between an image's visual contents and its semantic interpretation, also known as semantic gap, required a clever use of textual metadata (in addition to information extracted from the image's pixel contents) to make image and video retrieval solutions efficient and effective. The need to bridge (or at least narrow) the semantic gap has been one of the driving forces behind current VIR research. Additionally, other related research problems and market opportunities have started to emerge, offering a broad range of exciting problems for computer scientists and engineers to work on. In this introductory book, we focus on a subset of VIR problems where the media consists of images, and the indexing and retrieval methods are based on the pixel contents of those images -- an approach known as content-based image retrieval (CBIR). We present an implementation-oriented overview of CBIR concepts, techniques, algorithms, and figures of merit. Most chapters are supported by examples written in Java, using Lucene (an open-source Java-based indexing and search implementation) and LIRE (Lucene Image REtrieval), an open-source Java-based library for CBIR. Table of Contents: Introduction / Information Retrieval: Selected Concepts and Techniques / Visual Features / Indexing Visual Features / LIRE: An Extensible Java CBIR Library / Concluding Remarks
商品描述(中文翻譯)
視覺資訊檢索(Visual Information Retrieval, VIR)是一個活躍且充滿活力的研究領域,旨在提供組織、索引、註解和從大型非結構化資料庫中檢索視覺資訊(圖像和視頻)的手段。VIR 的目標是根據與給定查詢的相關性來檢索匹配項,這通常以示例圖像和/或一系列關鍵字的形式表達。在其早期(1995-2000 年),研究工作主要由內容為基礎的方法主導,這些方法主要來自圖像和視頻處理社群。在過去的十年中,人們普遍認識到,由於圖像的視覺內容與其語義解釋之間缺乏一致性所帶來的挑戰,也稱為語義差距,要求巧妙地使用文本元數據(除了從圖像的像素內容中提取的信息)來使圖像和視頻檢索解決方案高效且有效。縮小(或至少縮小)語義差距的需求已成為當前 VIR 研究的驅動力之一。此外,其他相關的研究問題和市場機會也開始出現,為計算機科學家和工程師提供了一系列令人興奮的問題來研究。在這本入門書中,我們專注於一組 VIR 問題,其中媒體由圖像組成,索引和檢索方法基於這些圖像的像素內容——這種方法稱為基於內容的圖像檢索(Content-Based Image Retrieval, CBIR)。我們提供了一個以實作為導向的 CBIR 概念、技術、演算法和效能指標的概述。大多數章節都附有使用 Java 編寫的範例,並使用 Lucene(基於 Java 的開源索引和搜索實作)和 LIRE(Lucene 圖像檢索),這是一個基於 Java 的開源 CBIR 庫。目錄:介紹 / 資訊檢索:選定的概念和技術 / 視覺特徵 / 索引視覺特徵 / LIRE:可擴展的 Java CBIR 庫 / 總結性評論
