Combining Human Genetics and Causal Inference to Understand Human Disease and Development
暫譯: 結合人類遺傳學與因果推斷以理解人類疾病與發展

Davey Smith, George, Richmond, Rebecca, Pingault, Jean-Baptiste

  • 出版商: Cold Spring Harbor Laboratory Press
  • 出版日期: 2022-01-31
  • 售價: $5,540
  • 貴賓價: 9.5$5,263
  • 語言: 英文
  • 頁數: 254
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1621823814
  • ISBN-13: 9781621823810
  • 相關分類: Data-mining
  • 海外代購書籍(需單獨結帳)

商品描述

In human genetics, causal inference methods leverage large omics data sets and phenotypic information to decipher various cause-and-effect relationships in human health and disease (e.g., smoking and lung cancer). The focus of such work is typically on modifiable variables (e.g., behavior or environmental exposure) that impact disease onset, progression, and outcome. A better understanding of these variables can lead to interventions and therapeutics that have a desirable impact on public health.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine examines advances in causal inference approaches in human genetics and how they are being used to enhance our understanding of human development and disease. The contributors discuss family-based study designs for causal inference, including twin designs, adoption designs, and in vitro fertilization designs, that separate inherited factors from perinatal environmental exposures. They also review various types of Mendelian randomizationDLa population-based approach that is growing in utility and popularityDLas well as their integration with family-based designs.

The use of these approaches to investigate causal mechanisms in specific scenarios (e.g., maternal smoking during pregnancy and ADHD in offspring) is also covered. This volume is therefore an essential read for geneticists, epidemiologists, and all biomedical scientists and public health professionals dedicated to using genetic information to improve human health.

商品描述(中文翻譯)

在人類遺傳學中,因果推斷方法利用大型的組學數據集和表型信息來解讀人類健康和疾病中的各種因果關係(例如,吸煙與肺癌)。這類工作的重點通常放在可改變的變數上(例如,行為或環境暴露),這些變數會影響疾病的發作、進展和結果。對這些變數的更好理解可以導致對公共健康有正面影響的干預和治療方法。

這本由該領域專家撰寫和編輯的書籍,來自Cold Spring Harbor Perspectives in Medicine,探討了人類遺傳學中因果推斷方法的進展,以及這些方法如何被用來增進我們對人類發展和疾病的理解。貢獻者討論了用於因果推斷的家庭研究設計,包括雙胞胎設計、收養設計和體外受精設計,這些設計能夠將遺傳因素與圍產期環境暴露分開。他們還回顧了各種孟德爾隨機化方法——這是一種在實用性和受歡迎程度上日益增長的人口基礎方法——以及它們與家庭設計的整合。

本書還涵蓋了這些方法在特定情境下(例如,母親在懷孕期間吸煙與後代注意力不足過動症之間的關係)的因果機制調查。因此,這本書對於遺傳學家、流行病學家以及所有致力於利用遺傳信息改善人類健康的生物醫學科學家和公共健康專業人士來說,都是必讀之作。