Differential Privacy: From Theory to Practice
暫譯: 差分隱私:從理論到實踐
Ninghui Li, Min Lyu, Dong Su
- 出版商: Morgan & Claypool
- 出版日期: 2016-10-26
- 售價: $1,800
- 貴賓價: 9.5 折 $1,710
- 語言: 英文
- 頁數: 140
- 裝訂: Paperback
- ISBN: 1627054936
- ISBN-13: 9781627054935
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
深入淺出 C (Head First C)$880$695 -
Photoshop 影像處理實務 (PhotoShop CS4 影像創意魔法)$450$383 -
無瑕的程式碼 - 敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
無瑕的程式碼 番外篇-專業程式設計師的生存之道 (The Clean Coder: A Code of Conduct for Professional Programmers)
$360$281 -
Python 程式設計入門 (適用於 2.x 與 3.x 版)$620$484 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
R語言資料分析活用範例詳解$520$442 -
Apple TV 好好玩:蘋果達人暗藏的 Apple TV 進擊攻略$199$155 -
Python 機器學習 (Python Machine Learning)$580$452 -
Python 新手使用 Django 架站的 16堂課 - 活用 Django Web Framework 快速建構動態網站
$690$538 -
$474網絡爬蟲全解析——技術、原理與實踐 -
無瑕的程式碼-敏捷完整篇-物件導向原則、設計模式與 C# 實踐 (Agile principles, patterns, and practices in C#)$790$616 -
$450視覺 SLAM 十四講:從理論到實踐 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
ASP.NET 專題實務 I -- C#入門實戰 (VS 2017版)(附長556分教學錄影檔)$820$648 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
打造可維護軟體|編寫可維護程式碼的10項法則 (C#版) (Building Maintainable Software, C# Edition: Ten Guidelines for Future-Proof Code)$450$356 -
Python 初學特訓班 (增訂版) (附250分鐘影音教學/範例程式)$480$379 -
$301機器學習系統設計 : Python 語言實現 (Designing Machine Learning Systems with Python) -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
Python 架站特訓班 -- Django 最強實戰$450$356 -
看板實戰 : 用一張便利貼訓練出100分高效率工作團隊 (Kanban in Action)$560$476 -
Angular2 其實可以很簡單:實務範例教學$450$383 -
第一次用 Docker 就上手$420$357 -
$356大數據分析師權威教程:機器學習、大數據分析和可視化
商品描述
Over the last decade, differential privacy (DP) has emerged as the de facto standard privacy notion for research in privacy-preserving data analysis and publishing. The DP notion offers strong privacy guarantee and has been applied to many data analysis tasks.
This Synthesis Lecture is the first of two volumes on differential privacy. This lecture differs from the existing books and surveys on differential privacy in that we take an approach balancing theory and practice. We focus on empirical accuracy performances of algorithms rather than asymptotic accuracy guarantees. At the same time, we try to explain why these algorithms have those empirical accuracy performances. We also take a balanced approach regarding the semantic meanings of differential privacy, explaining both its strong guarantees and its limitations.
We start by inspecting the definition and basic properties of DP, and the main primitives for achieving DP. Then, we give a detailed discussion on the the semantic privacy guarantee provided by DP and the caveats when applying DP. Next, we review the state of the art mechanisms for publishing histograms for low-dimensional datasets, mechanisms for conducting machine learning tasks such as classification, regression, and clustering, and mechanisms for publishing information to answer marginal queries for high-dimensional datasets. Finally, we explain the sparse vector technique, including the many errors that have been made in the literature using it.
The planned Volume 2 will cover usage of DP in other settings, including high-dimensional datasets, graph datasets, local setting, location privacy, and so on. We will also discuss various relaxations of DP.
商品描述(中文翻譯)
在過去十年中,差分隱私(Differential Privacy, DP)已成為隱私保護數據分析和發布研究的事實標準隱私概念。DP 概念提供了強大的隱私保障,並已應用於許多數據分析任務。
本次綜合講座是關於差分隱私的兩卷中的第一卷。這次講座與現有的差分隱私書籍和調查不同,我們採取了一種平衡理論與實踐的方法。我們專注於算法的實證準確性表現,而非漸近準確性保證。同時,我們試圖解釋為什麼這些算法會有這樣的實證準確性表現。我們還對差分隱私的語義意義採取平衡的方式,解釋其強大的保證及其局限性。
我們首先檢視 DP 的定義和基本特性,以及實現 DP 的主要原語。接著,我們詳細討論 DP 提供的語義隱私保證及應用 DP 時的注意事項。然後,我們回顧了針對低維數據集發布直方圖的最先進機制、進行機器學習任務(如分類、回歸和聚類)的機制,以及針對高維數據集回答邊際查詢的資訊發布機制。最後,我們解釋了稀疏向量技術,包括文獻中使用該技術時所犯的許多錯誤。
計劃中的第二卷將涵蓋在其他環境中使用 DP 的情況,包括高維數據集、圖數據集、本地環境、位置隱私等。我們還將討論 DP 的各種放寬條件。
