Statistical Relational Artificial Intelligence: Logic, Probability, and Computation (Synthesis Lectures on Artificial Intelligence and Machine Learning)
暫譯: 統計關聯人工智慧:邏輯、機率與計算(人工智慧與機器學習綜合講座)
Luc De Raedt, Kristian Kersting, Sriraam Natarajan
- 出版商: Morgan & Claypool
- 出版日期: 2016-03-24
- 售價: $2,380
- 貴賓價: 9.5 折 $2,261
- 語言: 英文
- 頁數: 190
- 裝訂: Paperback
- ISBN: 1627058419
- ISBN-13: 9781627058414
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
深入淺出 Java 程式設計, 2/e (Head First Java, 2/e)$880$695 -
Java 7 教學手冊, 5/e$650$553 -
Arduino 基礎入門套件 (附範例程式下載連結)$950$903 -
Arduino 升級入門(進階)套件 (附範例程式下載連結)$1,400$1,330 -
無瑕的程式碼 番外篇-專業程式設計師的生存之道 (The Clean Coder: A Code of Conduct for Professional Programmers)
$360$281 -
深入淺出 C#, 3/e (Head First C#, 3/e)$980$774 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
實戰網路安全監控|入侵偵測與因應之道 (The Practice of Network Security Monitoring: Understanding Incident Detection and Response)$490$387 -
接案我最行! HTML5 + CSS3 + JavaScript 商業範例必殺技$480$408 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
Hadoop + Spark 大數據巨量分析與機器學習整合開發實戰$620$484 -
iOS 9 + Apple Watch 程式設計實戰-快速上手的開發技巧 200+$540$427 -
圖解物聯網|感測器的架構與運用$380$323 -
Raspberry Pi 最佳入門與實戰應用, 2/e (適用 Raspberry Pi 2/Raspberry Pi 第一代)$450$356 -
$662遊戲設計的 236個技巧:遊戲機制、關卡設計和鏡頭竅門 -
SEO 超入門 -- 教你免費又有效的網站行銷好點子$450$383 -
NRF24L01+ 2.4GHz RF Module$100$95 -
你所不知道的 JS|導讀,型別與文法 (You Don't Know JS: Up & Going)$520$411 -
快速查, 馬上用! CSS3+jQuery 手機網站 UI 範例實作$450$383 -
React Native 學習手冊 (Learning React Native: Building Native Mobile Apps with JavaScript)$580$458 -
使用者故事對照 (User Story Mapping: Discover the Whole Story, Build the Right Product)$580$458 -
資料科學的商業運用 (Data science for business)$680$537 -
WordPress 架站的 12堂課|網域申請x架設x佈景主題x廣告申請$480$379 -
讓世界變方便的科技魔法:為什麼 Google 這麼厲害、手機可以導航、網路可以看影片 (How Software Works: The Magic Behind Encryption, CGI, Search Engines, and Other Everyday Technologie)$350$298
商品描述
An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.
商品描述(中文翻譯)
一個與現實世界互動的智能代理將會遇到個別的人、課程、測試結果、藥物處方、椅子、箱子等,並需要推理這些個體的屬性及其之間的關係,同時應對不確定性。不確定性已在概率論和圖形模型中進行研究,而關係則在邏輯中進行研究,特別是在謂詞演算及其擴展中。本書探討了將邏輯和概率結合成所謂的關聯概率模型的基礎。它介紹了概率、邏輯及其組合的表示法、推理和學習技術。本書詳細聚焦於兩種表示法:馬可夫邏輯網絡(Markov logic networks),這是一種無向圖形模型的關聯擴展和加權一階謂詞演算公式,以及Problog,這是一種邏輯程序的概率擴展,也可以視為貝葉斯網絡的圖靈完備關聯擴展。
